CHAPTER 1
INTRODUCTION

This publication describes the Intel” 8086 family
of microcomputing components, concentrating
on the 8086, 808% and 8089 microprocessors. 1t is
written for hardware and software enginecers and
technicians who understand microcomputer
operating principles. The manual is intended to
introduce the product line and to serve as a refer-
ence during system design and implementation.

Recognizing that successful microcomputer-based
products are judicious blends of hardware and
software, the User's Manual addresses both sub-
jects, alihough at different leveis of detail. This
publication is the definitive source for informa-
tion describing the 8086 family components. Soft-
ware topics, such as programming languagcs,
utilities and examples, are given moderately
detailed, but by no means complele, coverage.
Additional references, available from Intel’s
Literature Department, are cited in the program-
ming secrions.

1.1 Manual Organization

The manual contains four chapters and three
appendices. The remainder of this chapter
describes the architecture of the 8086 family, and
subsequeni chapters cover the individual com-
ponents in detail,

Chapter 2 describes the 8086 and 8088 Central
Processing Units, and Chapter 3 covers the BORY
Input/Output Processor. These two chapters are
identically organized and focus on providing a
funcrional description of the 8086, 8088 and
8089, plus related Intel hardware and software
products. Hardware reference information—
elecirical characteristics, timing and physical
interfacing considerations—for all three pro-
cessors is concentrated in Chapter 4.

Appendix A is a collection of 8086 family applica-
tion notes; these provide design and debugging
examples. Appendix B contains complete data
sheets for all the 8086 family components and
system development aids; summary data sheets
caveting compatible components from other Intel
product lines are also reproduced in Appendix B.

1.2 8086 Family Architecture

Considered individually, the 8086, 8088 and 8089
are advanced third-generation microprocessors.
Moreover, these processors are ¢lements of a
larger design, that of the 8086 family. This
systems architecture specifies how the processors
and other compenents relate 1o each other, and is
the key to the exceptional versatility of these
products.

The components in the 8086 family have been
designed 1o operate together in diverse combina-
tions within the systematic framework of the
overall family architecture, In this way a single
family of components can be used to solve a wide
array of microcomputing problems. A compo-
nent mix can be tailored to fit the performance
needs of an application precisely, without having
to pay for unneeded capabilities that may be
bundled into more monolithic, CPU-centered
architectures. Using the same family of com-
ponents across multiple systems limits the learn-
ing curve problem and builds on past experience.
Finally, the modular structure of the family
architecture provides an orderly way for systems
to grow and change.

The 8086 family architecture is characterized by
three major principles:

1. System functions are disiributed among
speciabized components.

2.  Maultiprocessing capabilities are inhersnt in
the hardware.

3. A hierarchical bus organization provides for
the complex data flows required by high-
performance sysiems without burdening
simpler systems with unneeded capabilities.

Functional Distribution

Table 1-1 lists the compenents that constitute the
8086 microprocessor family. All components are
contained in standard dual in-line packages and
require single +5V power sources.
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Table 1-1. 8086 Component Family

Microprocessor

Technology Pins

Description

8086 Central Processing Unit (CPU}

8088 Central Processing Unit ({CPU)

8089  Input/Output Processor (I0P}

HMOS 40 |8/16 bit general-purpose micro-
processcr; 16-bit external data path.

HWMOS 40 |8/16 kit general-purpose micro-
processor, B-bit external daia path.

HMOS 40 | 8/16 bit microprocessor optimized for

high-speed |/Q operations; 8-bit and
16-bit external data paths.

Support Component

§253A Programmable Interrupt Controller (PIG)

#2682
8283

Octal Latch
Octal Latch (Inverting}

8284 Clock Generator and Driver

8286
8287

Octal Bus Transceiver
Octal Bus Transceiver (Inverting}
8288 Bus Controller

82890 Bus Arbiter

Technology Pins Function

NMGCS 28 |ldentities highest-priority interrupt
request.

Bipolar 20 |Demultiplexes and increases drive of
address bus.

Bipolar 18 |Provides time hase.

Bipolar 20 |increases drive on data bus.

Bipalar 20 |Generates bus command signals.

Bipolar 20 |Controls access of miceoprocassors

to muitimaster system pus.

Microprocessors

Al the core of the product line are three
microprocessors that share these characeeristics:

+  Standard operating speed is 5 MHz (200 ns
cycle time); a selected 8 MHz version of the
8086 CPU is also available.

*  Chips arc housed in reliable 40-pin packages.

+  Processors operate on both 8- and 16-bit data
types; internal data paths are at least 146 bils
wide,

* Up o | megabyle of memory can be
addressed, along with a separate 64k byte
/0 space.

*  The address/data and status interfaces of the
processors are compatible {the address and
data buses are time-multiplexed at the pro-
cessor, i.e., an address (ransmission is
followed by a data transmission over a subset
of the same physical lines).

The 80%6 and 8088 are third-generation ceniral
processing units (CPUs) that differ primarily in
their external data paths. The 8088 transfers data
between itself and other system components § bits
at a time. The 8086 can transfer either 8 or 16 bits
in one bus cycle and is therefore capable of
grearer throughput. Both processors have (wo
operating modes, selectable by a strapping pin. In
minimum mode, the CPUs emit the bus control
signals needed by memory and 1/O peripheral
components. In maximum mode, an 3288 Bus
Controller assumes responsibility for controlling
devices attached to the system bus. CPU pins no
longer needed for bus control are then redefined
to provide signals that support multiprocessing
systems.

The 8089 Input/Output Processor (IOP) is an
independent microprocessor whose design has
been optimized for transferring data. The 8039

1-2
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typically runs under the direction of a CPU, but it
executes a separate instruction stream and can
operate in parallel with other system processors.
The 10P contains two independent 170 channels
that combine atuributes of both CPUs and
advanced DMA (direct memory access) con-
trollers. The channels can execute programs and
perform programmed /0 operations similar to
CPUs. They may also transfer data by DMA, at
rates up 1o 1.25 megabytes per second (5 MHz
version). The channels can support mixes of 8-
and 16-bit 1/0 devices and memory. Combining
speed with programmable intelligence, the 8089
can assume the bulk of 1/0O processing overhead
and thereby free a CPU to perform other tasks.

interrupt Controller

The 825%9A Programmable Interrupt Controller
(PIC) is a new, 8086 family-compatible version
of the familiar 8259 that has been enhanced 1o
opetate with the advanced interrupt facilities of
the 8086 and 8088 CPUs. The B259A accepis
interrupt requests from up to eight sources; up
to 64 sources may be accommodated by
“‘cascading’” additional 8259As. Each interrupt
source is assigned a priority number that typi-
cally reflects its ““criticality’” in the system. The
82539A has several built-in, priority-resolving
mechanisms that are sclectable by software com-
mands from the CPU. These modes operate
somewhat differently, but in general the 8239A
continuously identifies the highest-priority active
interrupt request and generates an interrupt
request to the CPU if this request has higher
priority than the request currently being pro-
cessed. When the CPU recognizes the interrupt
request, the §239A transfers a code to the CPU
that identifies the interrupt source.

Bus Interface Components

Components may be selected from this modular
group to implement different system bus con-
figurations. Except for the 3284, all components
are optional; their inclusion in a system is based
on the needs of the application. All of the bus
interface componenis are implemented using
bipolar technology to provide high-quality, high-
drive signals and very fast internalk switching.

The 38284 Clock Generator and Driver provides
the ime base for the 8086 family micro-
processors. It divides the frequency signal from

an external crystal or TTL signal by three and
outputs the 5 MHz or 8 MHz processor clock
signal. It also provides the microprocessors with
reset and ready signals.

$282 or 8283 Octal Latches may be added to a
system to demultiplex the combined address/data
bus generated by the 8086 family micro-
processors. A demultiplexed bus provides
separate stable address and data lines required by
many peripheral components. Two latches
demultiplex 16 bits of the bus to provide an
address space of up 0 64k bytes, while three
latches generate the full 20-bit (megabyte) address
space, The latches also provide the high drive on
the address lines needed in larger systems.

8286 and 8287 Octal Bus Transceivers are used 10
provide more drive on data lines than the pro-
cessors themselves are capable of providing. One
or two transceivers may be used depending on the
width of the data bus (8 or 16 bits).

The 8288 Bus Controller decodes status signals
output by an 8089, or a maximum mode 8086 or
8088. When these signals indicate that the pro-
cessor is to run a bus cyele, the 8288 issues a bus
command that identifies the bus ¢ycle as memory
read, memory write, [/O read, 1/0 write, et¢. It
also provides a signal that strobes the address into
8282/83 latches. The 8288 provides the drive
levels needed for the bus control lines in medium
to large systems.

The 8289 Bus Arbiter controls the access of a pro-
cessar to a multimaster system bus. A multi-
master bus is a path to system resourees (typically
memory) that is shared by two or more
microprocessors (masters). Arbiters for each
master may use one of several priority-resolving
techniques to ensure that only one master drives
the shared bus.

Multiprocessing

Emploving multiple processors in medium to
large systems offers several significant advantages
over the centralized approach that relies on a
single CPU and extremely fast memory:

*+ system tasks may be allocated to
special-purpose processors whose designs are
optimized to perform certain types of tasks
simply and efficiently;
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* very high levels of performance can be
attained when multiple processors can
execute simultaneously (parallel processing);

* robusiness can be improved by isolaling
system functions so that a failure or error in
one part of the system has a limited effect on
the rest of the system;

* the natural partitioning of the system
promotes parallel development of sub-
systemns, breaks the application into smaller,
more manageable tasks, and helps isclate the
effects of system modifications.

The 8086 family architecture is explicitly designed
to simplify the development of multiple processor
systems by providing facilitics for coordinating
the interaction of the processors,

The architecture supports two types of pro-
cessors: independent processors and
coprocessors. An independent processor is one
that executes its own instruction stream. The
8086, 8088 and 8089 are examples of independent
processors. An 8086 or 8088 typically executes a
program in response t¢ an interrupt. The 8089
starts its channels in response to an interrupt-tike
signal cailed a channel attention: this signal is
typically issued by a CPU.

The 8086 architecture also supports a second type
of processor, called a coprocessoer. Coprocessor
“hooks’ have been designed into the 8086 and
8088 so that this type of processor can be
accommodated in the future. A coprocessor dif-
fers from an independent processor in thai jt
obtains its instructions from another Processor,
called a host. The coprocessor monitors instruc-
1ions fetched by the host and recognizes certain of
these as its own and executes them. A
coprocessor, in effect, extends the instruction sei
of its host processor.

The 8086 family architecture provides buitt-in
solutions to two classic multiprocessing coordina-
tion problems: bus arbitration and mutual exclu-
sion. Bus arbitration may be performed by the
bus request/grant logic contained in each of the
processors, by 8289 Bus Arbiters, or by a com-
bination of the two when processors have access
to multiple shared buses. In all cases, the arbitra-
tion mechanism operates invisibly to software.

For mutual exclusion, each processor has a
LOCK ({bus lock) sipnal which a program may
activate 10 prevent other processors from obiain-
ing a shared system bus. The 8089 may lock the
bus during 2 DMA transfer to ensure that both
the transfer compleies in the shortest possible
time and that another processor does not access
the target of the transfer (e.g., a buffer) while it is
being updated. Each of the processors has an
instruction that examines and updates a memory
byte with the bus locked. This instruction can be
used to implement a semaphore mechanism for
controlling the aceess of multiple processors to
shared resources. (A semaphore is a variable that
indicates whether a resource, such as a buffer or a
pointer, is “available’’ or ““in use’”; section 2.5
discusses semaphores in more detail).

Bus Organization

Figure 1-1 summarizes the 8086 family bus struc-
ture. There are two different types of huses:
system and local. Both buses may be shared by
multiple processors, i.e., both are multimaster
buses. Microprocessors are always connected 10 a
local bus, and memory and 1/0 components
usuaily reside on a system bus. The 8086 family
bus interface components link a local bus to a
system bus.

Local Bus

The local bus is optimized for use by the 8086
family microprocessors. Since standard memory
and 1/0 components are not attached 10 the local
bus, information can be multiplexed and encoded
to make very efficient use of processor pins {cer-
tain MCS-85™ peripheral components can he
directly connected to the local bus). This allows
several pins to be dedicated to coordinating the
activity of muliiple processors sharing the local
bus. Multiple processors connected to the same
local bus are said to be local to each other; pro-
cessors on different local buses are said 1o be
remote to each other, or configured remotely,
Both independent processors and COProcessors
may share a local bus; on-chip arbitration logic
determines which processor drives the buys,
Because the processors on the local bus share the
same bus interface components, the local con-
figuration of multiple processors provides a com-
pact and inexpensive multiprocessing system.
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Figure 1-1. Generalized 8086 Family Bus Structure
System Bus The system bus design is modular and subsets

A full implementation of an 8086 system bus con-
sists of the following five sets of signals:

address bus,

data bus,

control lines,

interrupt lines, and

arbitration lines.

ok WD -

These signals are designed to meet the needs of
standard memory and 170 devices; the address
and data buses are demultiplexed and traditional
conirol signals {memory read/write, 1/0
read/write, etc.) are provided on the system bus.

may be implemented according to the needs of the
application. For example, the arbitration lines are
not needed in singlec-processor systems or in
multiple-processor systems that perform arbitra-
tion at the local-bus level.

A group of bus interface components transforms
the signals of a local bus in1o a sysiem bus. The
number of bus interface components required to
generate a system bus depends on the size and
complexity of the system; reduced application
needs translate directly into reduced component
counts. These main variables deiermine the con-
figuration of a bus interface group: address space
size (number of latches), data bus width (number
of transceivers), and arbitration needs {presence
of a bus arbriter).
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The 8086 family system bus is functionally and
clectrically compatible with the Multibus™
multimaster system bus used in Intel's ISBC™
line of single board computing products. This
compalability gives sysiem designers access to a
wide variety of computer, memory, communica-
tions and other modules that may be incorporated
into products, used for evaluation or for test
vehicles.

Processing Modules

The processor(s) and bus interface group(s) that
are connected by a local bus constitute a process-
ing module. A simple processing module could
consist of a single CPU and one bus interface
group. A more complex module would conrain
multiple processors, such as two HOPs, or a CPU
and one or two I0Ps. One bus interface group
typically links the processors in the module to a
public system bus. If there are multiple processing
maodules in the system, all memory or 1/0 con-
nected 1o the public bus is accessible to ali pro-
cessing modules on the public bus. 8289 Bus
Arbiters in each processing module contro] the
access of the modules to the public bus and hence
to the public memory and 1/0.

A second bus interface group may be connected
to a processing module’s local bus, generating a
second bus. This bus can provide the processing
module with a private address space that is not
accessible to other processing modules. Distri-
buting memory and 1/0 resources in this manner
can improve system robustness by isolating the
effects of failures. It can also increase system
throughput dramatically. If processor programs
and local data are placed in private memory, con-

tention for use of the public system bus can be
held (0 a minimum to ensure that shared
resources are quickly available when they are
needed. In addition, processors in separate
modules can simultaneously fetch instructions
from private memory spaces to allow multiple
system tasks to proceed in parallel,

Bus Implementation Examples

This section summarizes the 8086 family bus
organization by showing how components from
the family can be combined to implement diverse
bus configurations. The first two examples
ilustrate special cases that extend the applicabil-
ity of the 8086 family to smaller systems. The
remaining examples add and recombine the same
basic components to form progressively more
complex bus configurations. Nowe that these
examples are intended to be illustrative rather
than exhaustive; many different combinations of
components can be tailored to fit the needs of
individual applications.

In its minimum mode configuration, the B088
time-multiplexes its 8-bit data bus with the lower
eight bits of its 20-bit address bus (figure 1-2).
This multiplexed address/data bus, and the bus
control signals emitted by the 8088, are directly
compatible with the multiplexed bus components
of Intel’s 8085 family. These peripherals contain
on-chip logic that demultiplexes a combined
address/data bus. In addition, many of these
devices are multifunctional, combining, for
example, RAM, 1/0 poris and a timer on & single
chip. By using these components, it is possible to
buiid small (as few as four chips) economical
systems that are nonetheless capable of perform-
ing significant computing tasks.

8088
cLock —_-
GEMERATOR cRU

CONTROL LINES

ADDRESS/
DATA LINES

8088 MULTIPLEXED
BUS

Figure 1-2. 8088 Multiplexed Bus
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Combining 8282/83 latches with a minimum
mode 5086 or 8088 produces a minimum mode
system bus (figure 1-3). Two latches provide an
address space of up to 64k bytes; adding a third
latch provides access to the full megabyie of
memory. An 8288 Bus Controller is not required
for this implementation as the CPUs themselves
emit the bus control signals when they are con-
figured in the minimum mode. This demulti-
plexed bus structure is compatible with the wide
array of memory and [/Q components that have

been developed for the industry-standard 8030A
CPU. Eighi-bit peripherals may be connected to
both the upper and tower halves of the 8086%s
l6-bit data bus. 8286/8B7 iransceivers may be
added to provide additional drive on the data
lines, where tequired. Including an 8259A gives
the CPU the ability 10 respond to multiple inter-
rupt sources without polling, The minimum mode
system bus configuration is well-suited to a
variety of systems whose computational require-
ments can be met by a single 8086 or 8088 CPU,
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Figure 1-3. Minimum Mode System Bus




INTRODUCTION

When an 8086 or 5088 is configured in maximum
mode and an 8288 is added 1o control the systemn
bus, one or two 3089s mayv be directly connected
10 the CPU (figure 1-4). The processors ail share
the same latches, transceivers, clock and bus con-
troller. via the local bus. Arbitration logic built
inte the 8086, 83088 and 808% coordinates use of
the local bus, and thus of the system bus. This bus
configuration enables the powerful [/C handling
capahililies of (the 8089 1o be incorporated inte
sysiems of moderate size and cost.

The B289 e¢nables high-performance systems to be
designed as a series of independent processing
madules whose activities are coordinated via a
shared system bus. Figure 1-5 shows the multi-

master systern bus interface; this bus structure is
electrically compatible with the Multibus™
architecture used in lntel iSBC™ single-board
compuling systems.

Several different combinations of processors may
be atiached to the local bus of a multimaster com-
puting module:

= asingle 8086 or 8038

*  agingle 8089

* wo 8080s

= an 8086 or 8088 and one 8089

» an 3086 or 8088 and 1two 3089s
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Figure 1-4. Multimaster Local Bus
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Figure 1-5. Basic Multimaster Processing Module

All of the processors on the local bus obtain
access to the system bus through a single set of
interface components.

One or two 808%s in a multimaster processing
module may be configured with a private 1/0 bus
ag shown in figure 1-6. In this configuration.
memory access commands are directed to the
public multimaster system bus, while 1/0 com-
mands use the privaie 1/0 bus. Memory, contain-
ing the 8089's programs, as well as 1/0 devices,

may be connected (o the private 170 bus. Taking
this approach can greatly reduce the 8089's use of
the system bus as most memory and [/0 accesses
can be made to the privaie address space. The
system bus is thus made available for use by other
processors, and the 8089 can execute in parallel
with other processors for extended periods. A
limited private [/0O bus may be implemented
using the 8-bit multiplexed peripherals of the 8085
family, eliminating the latches and transceivers
shown in figure 1-6.
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Figure 1-6. Private [/O Bus

Adding a second 8288 (o the local bus atlows an
8086 or 8088 in a processing module 10 divide its
address space into system and resident sections
(figure [-7). A PROM or decoder is used to direct
an address reference to the sysiem bus or to the
resident bus. The resident bus allows the CPU to
run out of its own address space to minimize its

use of the systemy bus. Since no other processors
can access the private memory on the CPU’s resi-
dent bus, operating system code and data in this
space is protected from ertors in other processor
programs. If a second 8289 is added to a resident
bus module, the resident bus becomes a second
multimaster system bus,
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As an alternative to the resident bus, a private
read-only memory space can be implemented
using the RD (read) signal provided by the CPls
in hiew of an 8288 Bus Controller.

Multiprocessing systems of widely varying com-
plexity can be constructed from multimaster pro-
cessing modules. Each module can be designed
and implemented separately and can be optimized
to perform a given task. The modules can ¢om-
municate with each other by means of interrupts
and messages placed in system memory, Addi-
tional functions can be added to a system by
incorporating the new functions into modules and
connecting the modules to the system bus.

Figure 1-8 illustrates a hypothetical system in
which nine processors are distributed among five

multimaster processing modules. (For clarity, bus
interface components are not shown in figure
1-8.) A supervisor module controls the system,
primarily responding to interrupts and dis-
patching other modules to perform tasks. The
supervisor CPU, like the other processors in the
system, executes code from private memory that
is inaccessible to other modules. System memory,
which is accessible to all the processors, is used
only for messages, common buffers, etc. This
helps 10 “protect’” the processors from each other
and to keep system bus contention at a minimum.
The database module is responsible for maintain-
ing all system files. Each of the three graphics
modules supports a graphics CRT terminal, An
8089 in each module performs data transfers and
CRT refresh and calls upon an 8088 for intensive
computational routines.
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1.3 Development Aids

Inte! provides the sophisticated tools needed for
timely and economica! development of products
based on the 8086 famity. The 8086 family system
development environment is focused on the
Intellec® Series [ Microcomputer Development
System (figure 1-9). The Intellec system is a
multiple-microprocessor system that runs
ISIS-11, a disk-based operating system that has
been proven in thousands of installations. The
Inteller has built-in interfaces for a printer,
a PROM programmer and a paper tape
reader/punch. This same hardware and operating

system may be used to develop systems based on
other Intel microprocessor Families such as the
8085 and the 8048,

Three language translators support 8086 family
programming. PL/M-86 is a high-level language
for the 8086 and 8088 that supports structured
programming techniques. It is upward-
compatible with PL/M-80, the most widely used
high-level microprocesser language. ASM-86 may
be used to write assembly language programs for
the 8086 and the 8088 CPUs and gives the pro-
grammer access to the full power of these CPUs.
8089 programs are written in ASM-89, the 8089
assembly language.
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The language translators produce compatible out-
puts that can be manipulated by the sofiware
development utilities. LINK-86, for example, can
combine programs written in ASM-86 with
PL/M-86 programs. LIB-86 allows related pro-
grams to be stored in libraries to simplify storage
and retrival. LOC-86 assigns absolute memory
addresses to programs. OH-86 changes the for-
mat of an executable program for PROM pro-
gramming or for loading into the RAM of a test
vehicle.

The UPP-301 Universal PROM Programmer can
burn programs into any of Intel’'s PROM
memories; the UPP plugs into the Intellec®
system and allows program data to be
manipulated from the console before it is pro-
grammed into the PROM.

The SDK-86 is an (minimum mode) 3086-based
protoiyping and evaluation kit. It includes the
CPU, RAM, I/0 ports and a breadboard area for
interfacing customer circuits, A ROM-based
monitor program is supplied with the kit
Monitor commands may be eniered from an on-
board keypad or from a terminal; the moniior
returns results to the SDK-R6’s on-board LED
display or to a terminal. Moniter commands
allow programs to be entered, run, stopped, and
single-stepped; memory contents can be altered as
well as displayed. The SDK-C86 Software and
Cable Interface connects an SDK-86 to an
Intellec™ system. The software supplied with the
cable enables programs to be transferred between
the development system and the SDK-86 to allow
users to develop programs using the text editor,
translators and utilities of the [ntellec system and
then download the program to the SDK-86 for
execution.

The iSBC 86/12™ board is a high-performance
single board computer based on a maximum
mode 8086 CPU. The board containg 32k of dual-
port RAM that is accessible to the CPU via the
on-board bus and to other processors via the
built-in Multibus™ interface. The board also has
an asynchronous serial port, parallel ports with
sockets for drivers and terminators, two timers
and sockets for 16k of ROM.

An iSBC 86/12™ can be linked to an Intellec®
system using the iISBC 957™ Iniellec-iSBC 86/12
Interface and Execution Package. The package
includes a ROM-based monitor for the iSBC
86/12 board, software for the Intellec system and
cabling to connect the two. The package supposts
data transfers between Intellec disketies and iSBC
86/12 memory, full speed execution of customer
programs on the iSBC 86/12 board, breakpoints,
single-stepping, and data moves, replacements,
searches and compares. All commands are
entered {rom the Intellec console.

The ICE-8™ module is an in-circuit emulator
for the B0O86 microprocessor. A 40-pin probe
replaces the 8086 in the system under test. This
probe is connected to ICE-86 circuit boards that
in turn plug inte the Intellec® chassis. The ICE-86.
module emulates the 8086 in the sysiem under test
in response to commands entered through the
Intellec console. These commands allow the user
to debug the system by setting breakpoints, trac-
ing the flow of execution, single-stepping,
examining and altering memory and 1/0, etc. All
references (o program variables and labels are
symbolic (i.e., their PL/M-86 or ASM-86 names).
Software testing can also map ‘‘system under
test’” memory into the Intellec memory to permit
software testing to begin before prototype hard-
ware has been developed. ’
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CHAPTER 2
THE 8086 AND 8088
CENTRAL PROCESSING UNITS

This chapter describes the mainstays of the 8086

microprocessor family: the 8086 and 8088 ceniral soft S’ aPvee
processing units {CPUs). The material is divided aoaz k] aos
into ten sections and generally proceeds from w2 s | wesee
hardware 10 software topics as follows: aorz e | aerrse
1. Processor Overview a1 )5 w6 aresss
2. Processor Architecture aow [ 6 [ aresso
apne []7 s [ ] BAEss?
3. Memory aoe s N
4. Input/Output anz []s ] m
5. Multiprocessing Features sos e 8028 aflkowo  R0/ET)
6. Processor Control and Monitoring :::E :: : g;m 1;;:1'
7. Instruction Set o3 Che 1 W
8. Addressing Modes a0z [ »[Jov
. RTTR a1 w[JOEn =)
9. Programming Facililies o sPme s
10. Programming Guidelines and Examples e xR sy
wtr e T
The chapter describes the internal operation of CLKE " z:g::iv
the CPUJs in detail. The interaction of the pro- S [ meser
cessors with other devices is discussed in func-
tional terms; electrical characteristics, timing, and
other information needed to actually interface ano[} N Cvee
other devices with the 8086 and 8088 are provided atalz w[Jas
in Chapter 4. 2w E ] mESEE
azda s mrrssa
s1s 30 [ ] A18s55
2.1 Processor Overview mal]e ss| anarss
sl a[] 350 LHIGH)
The 8086 and 8088 are closely related third- asl]e sa[[] mnwx
generation microprocessors. The 80838 is designed aor[]s sl
with an 8-bit external data path to memory and aos]w %0:8 afdHow  RG/ETH
1/0, while the 8086 can transfer 16 bits at a time. wosC] u whmen @@
In almost every other respect the processors are d. o] -
identical; software written for one CPU will v P
execute on the other without alteration. The chips = women
are contained in standard 40-pin duoal in-line Aneln aovE
packages (figure 2-1) and operate from a single so1]1s wlloed i
+5V power source. aoa e sHae sy
il ] o7 21 [] INTA (L=
The 8086 and 8088 are suitable for an exception- wrel] e =[] TEst
aily wide spectrum of microcomputer applica- wrw 22[7] mEADY
tions, and this flexibility is one of their most cio[] 211 ] RESET
outstanding characteristics. Systems can range
from uniprocessor minimal-memory designs
implemented with a handful of chips (figure 2-2), LA MU MOBE PN FUNCTIONS f0.q- TOERY
to multiprocessor systems with up to a megabyte
of memory (figure 2-3). Figure 2-1. 8086 and 8088 Central Processing
Units
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8086 AND B0B8 CENTRAL PROCESSING UNITS

The large application domain of the B086 and
8088 is made possible primarily by the processors’
dual operating modes (minimum and maximum
mode) and buili-in  multiprocessing features.
Several of the 40 CPW pins have dual functions
that are selected by a strapping pin. Configured
in minimum mode, these pins transfer control
signals directly to memory and input/output
devices. In maximum mode these same pins take
on different functions that are helpful in medium
to large ystems, especially systems with multiple
processors. The control functions assigned to
these pins in minimum mode are assumed by a
supperi chip, the 8288 Bus Controller.

The CPUs are designed to operate with the 3089
Input/Quiput Processor (10P) and other pro-
cessors in multiprocessing and distributed pro-
cessing systems. When used in conjunction with
one or more 8089s, the 8086 and 8083 expand
the applicability of microprocessors inte 1/0-
intensive data processing svstems. Built-in coor-
dinating signals and instructions, and electrical
compatibility with Intel’s Multibus™ shared bus
architecture, simplify and reduce the cost of
developing multiple-processor designs.

Both CPUs are substantially more powerful than
any microprocessor previously offered by Intel.
Actual performance, of course, varies from
application to application, but comparisons to the
industry standard 2-MHz 8080A are instructive.
The 8088 is from four to six times more powerful
than the 8080A; the 8086 provides seven Lo ten
times the 8080A's performance (see figure 2-4).

RELATIVE PERFORMANCE

1974

1977 1876 1979

YEARINTRODUCED

Figure 2-4. Relative Performance of the
8086 and 8088

The BOBA's advantage over the 8088 is attributable
10 it5 16-bit external data bus. In applications that
manipulate 8-bit quantities extensively, or that
are execution-bound, the 8088 can approach to
within 10% of the 8086's processing throughpui.

The high performance of the 8086 and 8088 is
reafized by combining a 16-bit internal data path
with a pipelined architecture that allows instruc-
tions to be prefetched during spare bus cvcles.
Also contributing to performance is a compact
instruction format that enables more instructions
to be fetched in a given amount of time.

Software for high-performance 8086 and 8088
systems need not be written in assembly language.
The CPUs are designed to provide direct hard-
ware support for programs written in high-level
languages such as Intel’s PL/M-86. Most high-
level languages store variables in memory; the
8086/8088 symmetrical instruction set supports
direct operation on memory operands, including
operands on the stack. The hardware addressing
modes provide efficient, straightforward
implementations of based variables, arrays, ar-
rays of structures and other high-level language
data constructs, A powerful set of memory-to-
memoty string operations is available for efficient
character data manipulation. Finally, routines
with critical performance requirements that can-
not be met with PL/M-86 may be written in
ASM-86 (the 8086783088 assembly language) and
linked with PL/M-86 code.

While the 8086 and 8088 are totally new designs,
they make the most of users’ existing investments
in systems designed around the B3080/8085
microprocessers. Many of the standard Intel
memory, peripheral control and communication
chips are compatible with the 8086 and the R0BE.
Software is developed in the familiar Intellec'®
Microcaomputer Development System environ-
ment, and most existing programs, whether writ-
ten in ASM-80 or PL/M-80, can be direcily con-
verted to run on the 8086 and 8088,

2.2 Processor Architecture

Microprocessors generally execute a program by
repeatedly cycling through the sieps shown below
(this description is somewhat simplified):

1. Fetch the next instiruction from memory.

2. Read an operand {(if rvequired by
instruction),

the

2-3




8086 AND 8088 CENTRAL PROCESSING UNITS

3. Execute the instruction,

4. Write the
instruction).

result (if required by the

In previous CPUs, most of these steps have been
performed serially, or with only a single bus cycle
fetch overlap. The architecture of the 8086 and
8088 CPUs, while performing the same steps,
allocates them to two separale processing units
within the CPU. The ¢xecution unit (EU} executes
instructions; the bus imerface unit (BIU) fetches
instructions, reads operands and writes results,

The two units can operate independently of one
another and are able, under most circumstances,
to ¢xtensively overlap instruction ferch with exe-
cution. The result is that, in most cases, the time
normally required to fetch instructions *‘dis-
appears’’ because the EU executes instructions
that have already been fetched by the BIU. Figure
2-5 illustrates this overlap and compares it with
traditional microprocessor operation. In  the
example, overlapping reduces the elapsed time
required to execute three instructions, and allows
two additional instructions to be prefetched as
well.

I ELASPEDTIME

[
cpu: Esaé'ecuﬁai Ejy\rmtsi E’szr,c,na
SECOND = i
ERATION

BUS: I BUSY ' I BUSY I

GEN
MICROPROCESSOR

. E= [

aus:l Busq | BUSY—I I BUSY] Lausv I busv ] | BUSY |

.

INSTRUCTION STREAM
: { 1s1INSTRUCTION |ALREADY FETCHED):
m EXECUTE AND WRITE RESULT

7 2nd INSYRUCTION:
2] EXECUTE ONLY

3rd INSTRUCTION:
REAC OPERAND AND EXECUTE
Ath INSTRUCTION:
{UNDEFINED)
SthINSTRUCTION:
(YNOEFINED}

Figure 2-5. Overlapped Instruction Fetch and Execution

2-4




8086 AND 8088 CENTRAL PROCESSING UNITS

Execution Unit

The execution units of the 8086 and 8088 are iden-
tical (figure 2-6). A 16-bit arithmetic/logic unit
{(ALLD) in the EU maintains the CPU status and
contiol flags, and manipulates the general
registers and instruction operands. All registers
and data paths in the EU are 16 bits wide for fast
internal transfers.

The EU has no connection to the system bus, the
*‘outside world.”” It obtains instructions from a
queue maintained by the BIU, Likewise, when an
Instruction requires access to meinory ofr 1o a
peripheral device, the EU requests the BIU (o
obtain  or store the data. All addresses
manipulated by the EU are 16 bits wide, The BIt,
however, performs an address relocation that
gives the EU access to the full megabyte of
memory space (see section 2.3).

Bus Interface Unit

The B1Us of the 8086 and X088 are functionally
identical, but ar¢ implemented differently (o
match the structure and performance
characteristics of their respective buses,

The BIU performs all bus operations for the EU.
Drata is transferred between the CPU and memory
or I/0 devices upon demand from the EU. Sec-
tions 2.3 and 2.4 describe the interaction of the
BIU with memory and [/0 devices.

In addition, during periods when the EU 15 busy
executing instructions, the BIU "‘looks ahead™’
and feiches more instructions from memory. The
instructions are stored in an internal RAM array
called the instruction stream queue. The 8083
instruction queue holds up to four bytes of the
instruction stream, while the 3086 queue can store

EXECUTION UNIT (EU}

GENERAL
REGISTERS

BUSINTERFACE UNIT (81U}

SEGMENT
REGISTERS

INSTRUCTION
POINTER

1

ADDRESS
GENERATION

MULTIPLEXED BUS

- e —

AND BUS
CONTROL

!

INSTRUCTION
GUEUE

I FLAGS I

Figure 2-6. Execution and Bus Interface Units (EU and BIU)
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up to six instruction bytes. These queue sizes
allow the B1U to keep the EUJ supplied with pre-
fetched  instructions under most conditions
without monopolizing the system bus. The 8038
BIL} fetches another instruction byte whenever
one byte in its queue is empty and there is no
active request for bus access from the EU. The
8086 BIU operates similarly except that it does
nel initiate a fetch until there are two empty bytes
in its queue. The 8086 BIU normally obtains two
mstruction bytes per fetch; if a program transfer
forces fetching from an odd address, the 8086
BIU automatically reads one byte from the odd
address and then resumes fetching two-byte
words from the subsequent even addresses.

Under most circumstances the queues contain at
least one byte of the instruction stream and the
EU does not have to wait for instructions to be
fetched. The instructions in the queue are those
stored in the memory locations immediately adja-
cent to and higher than the instruction currently
being executed. That is, they are the next logical
instructions so long as execution proceeds seri-
ally. If the EU executes an instruction that
transfers control to another location, the BIU
resets the queue, fetches the instruction from the
new address, passes it immediately to ¢the EU, and
then begins refilling the queue from the new loca-
tion. In addition, the BIU suspends instruction
fetching whenever the EU requests a memory or
170 read or write {except that a fetch already in
progress is completed before executing the EU’s
bus request).

General Registers

Both CPUs have the same complement of eight
16-bit general registers (figure 2-7), The general
registers are subdivided into two sets of four
registers each: the data registers (sometimes called
the H & L group for “*high’’ and “‘low"), and the
pointer and index registers (sometimes catled the
P &1 group).

The data registers are unique in that their upper
thigh) and lower halves are separately
addressable. This means that each dara register
can be used interchangeably as a 16-bit register,
or a5 two §-bit registers. The other CPU registers
always are accessed as 16-bit units only. The dala
registers ¢an be used without ¢onstraint in most
arithmetic and logic operations. In addition,

]
H L
185 3l7 [
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—_—— — — —fsase
DATA Bt T Bl
GROUP ox COUNT
¢H ™ oL
e — DL — e W GATA
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o QESTINATION
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Figure 2-7. General Registers

S0me instructions use certain registers implicitly
{see table 2-1) thus allowing compact yet powerful
encoding.

Table 2-1. Implicit Use of General Registers

REGISTER OPERATIONS

AX Weord Multiply, Word Divide,
Word 1;0

AL Byte Multiply, Byte Divide, Byte
/O, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX Btring Cperations, Loops

CL Variablte Shift and Rotate

DX Word Multiply, Word Divide,
Indiract 11O

SP Stack Operations

sl String Operatians

DI String Operations

The pointer and index registers can also par-
ticipate in most arithmetic and logic cperations.
In fact, all ¢ight general registers fit the definition
of “‘accumulator’® as used in first and second
generation microprocessors. The P & [ registers
(except for BP) also are used implicitly in some
instructions as shown in table 2-1.
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Segment Registers

The megabyte of 8086 and 8088 memory space is
divided into logical segments of up to 64k bytes
cach. (Memory segmentation is described in sec-
tion 2.3.) The CPU has direct access to four
segments at a time; their base addrésses (startmg
[ocations) are contained in the segment registers
(see figure 2-8). The CS register points to the cur-
rent ¢ede segment; instructions are fetched from
this segment. The S5 register points to the ¢urrent
stack segment; stack operations are performed on
locations in this segment. The DS register points
to the current data segment; it generally contains
program variables. The ES register points to the
current extra segment, which alse is typically used
for data storage.

The segment registers are accessible to programs
and can be manipulated with several instructions.
Good programming practice and consideration of
compatibility with future Intel hardware and soit-
ware products dictate that the segment registers
be used in a disciplined fashion. Section 2.10 pro-
vides guidelines for segment register use,

5
€3 & MENT
o8 Er .
$3 g?a%“:nr
ES EroEnT

Figure 2-8. Segment Registers

Instruction Pointer

The 16-bit instruction peinter (IP) is analogous 1o
the program counter {PC} in the B8(Q30/8085
CPUs. The instruction pointer is updated by the
BIU s¢ that it contains the offset (distance in
bytes) of the next instruction from the beginning
of the current code segment; i.e_, [P points to the
next instruction. During normal execution, 1P
contains the offset of the next instruction to be
fetrched by the BIU; whenever IP is saved on the
stack, however, it first is automatically adjusied
to point to the next instruction to be execufed.
Programs do not have direct access to the instruc-
tion pointer, but instructions cause it to change
and to be saved on and restored from the stack.

Flags

The 3086 and 8088 have six 1-bit status flags
(figure 2-9) that the EU posts to reflect certain
properties of the result of an arithmetic or logic

STATUS
FLAGS
-~

CON FROL
FLAGS

| [

CARAY

PARITY
AURILAAY CARRY
2ERD

SIGN

OVERFLOW

TRRF

Figure 2-9. Flags

operation. A group of instructions is available
that allows a program to alter its execution
depending on the stale of these flags, that is, on
the result of a prior operation. Different instruc-
tions affect the status flags differently; in general,
however, the flags reflect the following
conditions:

1. Il AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble into
the high nibble or a borrow from the high
nibble into the low nibble of an 8-bit quantity
{low-order byie of a 16-bit quantity). This
flag is uwsed by decimal arithmetic
instructions,

2. 1f CF (the carry flag) is set, there has been a
carry out of, or a bortow inig, the high-order
bit of the result (8- or 16-bit). The flag is used
by instructions that add and subtract
multibyre numbers, Rotate instructions can
also isolate a bit in memory or a register by
placing it in the carry flag.

3. If OF {the overflow flag) is set, an arithmetic
overflow has occurred; that is, a significant
digit has been lost because the size of the
result exceeded the capacity of its destination
location. An Interrupt On Overflow instruc-
tion is available that will generate an inter-
rupt in this sitvation.
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4, Lf SF {the sign flag) is set, the high-order bit
of the result is a 1. Since negative binary
numbers are represented in the 3086 and 3088
in standard two's complement notation, SF
indicates the sign of the result (0 = positive,
1 = negative).

5. If PF (the parity flag) is set, the result has
even parity, an even number of I-bits. This
flag can be used to check for data iransmis-
S10N Errors.

6. If ZF (the zero flag) is set, the result of the
operation is 0.

Three additional control flags (figure 2-9) can be
set and cleared by programs to alter processor
operations:

1. Serting DF {the direction flag) causes siring
instructions to auto-decrement; that is, to
process sirings from high addresses to low
addresses, oy from *‘right to lefi.”” Clearing
DF causes string instructions to auto-
inerement, or 1o process strings from ““left to
I‘ight.”

2. Setting IF (the interrupt-enable flag) allows
the CPU to recognize external (maskable)
interrupt requests. Clearing IF disables these
interrupts. 1F has no affect on ¢ither non-
maskable external ot internally generated
interrupis,

3. Senting TF (the trap flag) puts the processor
into single-step mode for debugging. In this
mode, the CPU automatically gengrates an
internal interrupt after each &nsiruction,
allowing a program to be inspected as it exe-
cutes instruction by instruction. Section 2.10
contains an example showing the use of TF in
a single-siep and breakpoint routine.

8080/8085 Registers and Flag
Correspondence

The registers, flags and program counter in the
8080/8085 CPUs all have counterparts in the 8086
and 8088 (see figure 2-10%. The A register (ac-
cumulator) in the 8080/8085 corresponds to the
AL register in the 8086 and 8088. The 8080/ 8085
H&L,B&C, and D & E registers correspond to
registers BH, BL, CH, CL, DH and DL, respec-
tively, in the 8086 and 8088. The 3080/8085 SP
(stack pointer) and PC (program counter) have
their counterparts in the 5086/8088 SP and 1P.

The AF, CF, PF, SF, and ZF flags are the same in
both CPU families. The remaining flags and
registers are unigue to the 8086 and 8088. This
R080/8085 1o B086 mapping allows most existing
8080/8085 program code to be directly translated
inlo 8086/8083 code.

Mode Selection

Both processors have a strap pin (MN/MX) that
defines the function of eight CPU pins in the 8086
and nine pins in the 8088. Connecting MN/MX to
+5V places the CPU in minimum mode. In this
configuration, which is designed for small
systems {roughly ong or two boards), the CPU
itself provides the bus control signals needed by
memory and peripherals. When MN/MX is
strapped o ground, the CPU is configured in
maximum mode. In this configuration the CPU
encodes control signals on three fines. An 8288
Bus Controller is added (o decode the signals
from the CPU and to provide an expanded set of
control signals to the rest of the system. The CPU
uses the remaining free lines for a new set of
signals designed to help coordinate the activities
of other processors in the system. Sections 2.5
and 2.6 deseribe the functions of these signals.

2.3 Memory

The 8056 and 8088 can accommodate up 1o
1,048,576 bytes of memory in both minimum and
maximum mode. This section describes how
memory is functionally organized and used.
There are substantial differences in the way
memory components are actually accessed by the
lwo processors; these differences, which are in-
visible to programs, are covered in section 4.2,
External Memory Addressing.

Storage Organization

From a storage point of view, the 3086 and 8088
memory spaces are orgamzed as identical arrays
of 8-bit bytes (see figure 2-11). Instructions, byte
data and word data may be freely stored at any
byte address without regard for alignment thereby
saving memory space by allowing code w be
densely packed in memory (see figure 2-12), Odd-
addressed (unaligned) word variables, however,
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do not take advantage of the B036°s ability to
transfer 16-bits at a time. Instruction alighment
does not maierially affect the performance of
gither processor.

Following Intel convention, word data always is
stored with the most-significant byte in the higher
memoty location {see figure 2-13), Most of the
time this storage convention is “invisible’ to
anyone working with the processors; exceptions
may occur when monitoring the system bus or
when reading memory dumps.

A special class of data is stored as doublewords;
i.e., two consecutive words. These are called
pointers and are used to address data and code
that are outside the currently-addressable
segments. The lower-addressed word of a pointer
¢ontains an offset value, and the higher-addressed
word contains a segment base address. Each word
is stored conventionally with the higher-addressed
byte containing the most-significant eight bits of
the word (see figure 2-14).

TZaH T25H
[HEE 5 ' 5 |uex
000 ,l 0010 | vio1 | 0an [eIMARY

VALUE OF WORD STORED AT T24H: S502H

Figure 2-13. Storage of Word Variables

Segmentation

BO86 and 8088 programs ““view’’ the megabyte of
memory space as a group of segments that are
dcfined by the application. A scgment is a logical
unit of memory that may be up to 64k bytes long.
Each segment is made up of contiguous memory
locations and 1s an independent, separately-
addressable unit. Every segment is assigned (by
software) a base adidress, which is its starting
location in the memory space. All scgments begin
on 16-byte memory boundaries. There are no
other restrictions on segment locations; segments
may be adjacent, disjoint, partially overlapped,
or fully overlapped (see figure 2-15). A physical
memory location may be mapped into (contained
in) one or more logical segments.

The segment registers point to (contain the base
address values of) the four currently addressable
segments (see figure 2-16). Programs obiain
access to code and data in other segments by
changing the segment registers to point to the
desired segments.

Every application will definc and use segments
differently. The currently addressable segments
provide a generous work space: 64k bytes for
code, a 64k byte stack and 128k bytes of data
storage. Many applications can be written to
simply initialize the segment registers and then
forget them. Larger applications should be
designed with careful consideration given 1o seg-
ment definition.

5H

7H

0114 0191 0000 9000

& 1 8 1 o 1 0o 1 a4 1. ¢ L 2 _1 8 |

HEX _

1100 11 1011 | BINARY

VALUE OF POINTER STORED AT 4H:
SEGMENT BASE ADDRESS: 3BaCH

OFF3ET. 66H

Figure 2-14, Storage of Pointer Variables
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Figure 2-15, Segment Locations in Physical Memory
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Figure 2-16. Currently Addressable Segments

The segmented structure of the 8086/8088
memory space supporis modular software design
by discouraging huge, monolithic programs. The
segments also can be used to advantage in many
programming situations. Take, for example, the
case of an editor for several on-line texminals, A
64k text buffer (probably an extra segment) could
be assigned to each terminal. A single program
could maintain all the buffers by simply changing
register ES to point to the buffer of the terminal
requiring service,

Physical Address Generation

It is useful to think of every memory location as
having two kinds of addresses, physical and
logical. A physical address is the 20-bit value that
uniquely identifies each byte location in the
megabyte memory space. Physical addresses may
range from OH through FFFFFH. All exchanges
between the CPU and memoty components use
this physical address.

Programs deal with logical, rather than physical
addresses and allow code to be developed without
prior knowledge of where the code is to be located
in memory and facilitate dynamic management of
memory resources. A logical address consis(s of a
segment base value and an offset value. For any
given memory location, the segment base value
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locates the first byte of the containing segment
and the offset value is the distance, in bytes, of
the target location from the beginning of the
segment. Sepment base and offset values are
unsigned 16-bit quantities; the lowest-addressed
byte in a segment has an oflset of 0. Many dif-
ferent logical addresses can map to the same
physical location as shown in figure 2-17. In
figure 2-17, physical memory location 2C3H is
contained in two different overlapping segments,
one beginning at 2BOH and the other at 2C0H.

Whenever the BIU accesses memory—to fetch an
instruction or to obtain or store a variable—it
generates a physical address from a logical
address. This is done by shifting the segment base
value four bit positions and adding the offset as
illustrated in figure 2-18. Note that this addition
process provides for module 64k addressing
(addresses wrap around from the end of a seg-
ment to the beginning of the same segment),

The BIU obtzins the logical address of a memory
location from different sources depending on the
lype of reference that is being made (see table

2-2). Instructions always are fetched from the cut-
rent code segment; IP contains the offset of the
target instruction from the beginning of the seg-
ment. Stack instructions always operate on the
current stack segment; SP contains the offset of
the top of the stack. Most variables (memeory
operands) are assumed 10 reside in the current
data segment, although a program can instruci
the BIU t0 access a variable in one of the other
currently addressable segments, The offset of a
memory variable is calculated by the EU, This
calculation is based on the addressing mode
specified in the instruction; the result is called the
operand’s effective address (EA). Section 2.8
covers addressing modes and effective address
calculation in detail,

Strings are addressed differently than other
variables. The source operand of a string instruc-
tion is assurned to Jie in the current data segment,
but another currently addressable segment may be
specified. Its offset is taken from register SI, the
source index register. The destination operand of
a string instruction always resides in the current

2CAH

PHYSICAL
ADDRESS

LOGICAL
ADDRESSES

N SEGMENT—m |
BASE

Figure 2-17. Logical and Physical Addresses
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ZE3H
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Figure 2-18. Physical Address Generation

Table 2-2. Logical Address Sources

DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch C5 NONE IP
Stack Operation 35 NONE SP
Variable (except following) DS CS,ES.88 Effective Address
String Saurce DS C5,ES.,85 sl
String Destination ES NONE [h]]
BP Used As Base Register 5§85 €C5,D5,ES Effective Address

extra segment; its offset is taken from DI, the
destination index register. The string instructions
automatically adjust 81 and DI as they process the
strings one byte or word at a time.

When register BP, the base pointer register, is
designated as a base register in &n instruction, the
variable is assumed to reside in the current stack
segment. Register BP thus provides a convenient
way o address data on the stack; BP can be used,
however, to access data in any of the other cur-
rently addressable segments.

In most cases, the BIU’s segment assumptions are
a convenience to programmers, It is possibie,
however, for a programmer to explicitly direct the
BIU to access a variable in any of the currently
addressable segments (the only exception is the
destination operand of a string instruction which
must be in the extra segment). This is done by
preceding an instruction with a segment override
prefix. This one-byte machine insiruction tells the
BIU which segment register to use to access a
variable referenced in the following instruction.

Dynamically Relocatable Code

The segmented memory structure of the 8086 and
R088 makes it possible to write programs that are
position-independent, or dynamically relocatable.
Dynamic relocation allows a multiprogramming
or multitasking system to make particularly effec-
tive use of available memory. Inactive programs
can be written to disk and the space they occupied
allocated to other programs. If a disk-resident
program is needed later, it can be read back into
any available memory location and restarted,
Similarly, if a program needs a large contizguous
block of storage, and the total amount is available
only in nonadjacent fragments, other program
segments can be compacted to free up a con-
tinuous space. This process is shown graphigally
in figure 2-19.

In order to be dynamically relocatable, a program
must not load or alier its segment registers and
must not transfer directly to a location outside the
current code segment. In other words, all offsets
in the program must be relative o fixed values

2-13
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Figure 2-19. Dynamic Code Relocation

contained in the segment registers. This allows the
program to be moved anywhere in memory as
long as the segment registers are updated (o point
to the new base addresses. Section 2.10 contains
an example that illustrates dynamic code
relocation.

Stack Implementation

Stacks in the 8086 and 8088 are implemented in
memery and are located by the stack segment
register (58) and the stack pointer register (3P). A
system may have an unlimited number of stacks,
and a stack may be up to 64k bytes long, the max-
imusn length of a segment. (An attempt to expand
astack beyond 64k bytes overwrites the beginning
of the stack.) One stack is directly addressable at
a time; this is the current stack, often referred (o
simply as “the” stack. SS contains the base
address of the current stack and SP poinis to the
top of the stack (TOS). In other words, SP con-
tains the offset of the top of the stack from the

stack segment’s base address. Note, however, that
the stack’s base address (contained in S3) is not
the “*botrom’” of ihe stack.

8086 and 8088 stacks are 16 bits wide; instructions
that operate on a stack add and remove stack
items one word at a iime. Ap item is pushed onto
the stack (see figure 2-20) by decrementing SP by
2 and writing the item at the new TOS. An item is
popped off the stack by copying it from TOS and
then incrementing SP by 2. In other words, the
stack grows down in memory loward its base
address. Stack operations never move ilems on
the stack, nor do they erase them. The top of the
stack changes only as a result of updating the
stack pointet.

Dedicated and Reserved Memory
Locations

Two areas in extreme low and high memory are
dedicated to specific processor functions or are
reserved by Intel Corporation for use by Intel

2-14
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Figure 2-20. Stack Operation

hardware and software products. As shown in
figure 2-21, the location are: OH throgh 7FH (128
bytes) and FFFFOH through FFTFFH (16 bytes).
. These areas are used for interrupt and system
|. reset processing 8086 and 8088 application
I systems should not use these areas for any other
purpose. Doing so may make these systems
i incompatible with future Intel products.

8086/8088 Memory Access
Differences

The 8086 can access either 8 or 16 bits of memory
at a rime. If an instruction refers to a word
variable and that variable is located at an even-
numbered address, the 8086 accesses the complete
i word in one bus cvcle, IT the word is located at an
odd-numbered address, the 8086 accesses the
word one byte at a time in two consecutive bus
cycles.

To maximize throughput in 3086-based systems,
; 16-bit data should be stored at even addresses
; (should be word-aligned). This is particularly true
of stacks. Unaligned stacks can slow a system’s
response to interrupts. Nevertheless, except for
the performancc penalty, word alignment is

totally transparent to software. This allows max-
imum data packing where memory space Is
constrained.

The 8086 always fetches the instruction stream in
words from even addresses except that the first
fetch after a program transfer to an odd address
obtains & byte. The instruciion stream is
disassembled inside the processor and instruction
alignment will not materially affect the per-
formance of most systems.

The 8088 always accesses memory in bytes. Word
operands are accessed in two bus cycles regardless
of their alignmeni. Instructions also are fetched
one byte at a time. Although alignment of word
operands does not affect the performance of the
8088, locating 16-bit data on even addresses will
insure maximum throughput if the system is ever
transferred to an 8036.

2.4 Input/Output

The 2086 and ROZ8 have a versatile set of in-
put/output facilities. Both processors provide a
large /O space that iz separate from the memory

| o

Mnemonics € Intel, 1978



8086 AND 8088 CENTRAL PROCESSING UNITS

FFEFFH
RESERVED
FEEFCH
FFFEAH
DEDICATED
FEFFOM
FFFEFH
FFFRH
1§
A OPEN
r (J’\ L al
- OPEN r
8o
7FH
RESERVED 100H
T FFH
194 RESERVED o
13H F7H
DEBICATED OPEN
oK oH
MEMORY 10

Figure 2-21. Reserved and Dedicated Memory
and 1/0 Locations

space, and instructions that transfer data berween
the CPU and devices located in the 1/0 space.
[/Q devices also may be placed in the memaory
space to bring the power of the full instruction set
and addressing modes to input/output  pro-
cessing. For high-speed transfers, the CPUs may
be used with traditional direct MEMmory access
controllers or the 8089 Input/Output Processor.

Input/Output Space

The 8086/8088 1/O space can accommodare up to
64k 3-bit ports or up to 32k 16-bit ports. The IN
and QOUT (input and output} instructions transfer
data between the accumulator (AL for byte
transfers, AX for word transfers) and ports
located in the I/0 space.

The 170 space is not segmented; to access a port,
the BIU simply places the port address (0-64k) on
the lower 16 lines of the address bus. Different
forms of the 1/0 instructions allow the address ta
be specified as a fixed value in the instruction or
asa variable taken from register DX.

Restricted 170 Locations

Locations F8H through FFH (eight of (he 64k
locations) in the [/Q space are reserved by Intel
Corporation for use by future Intel hardware and
software products. Using these locations for any
other purpose may inhibit compatibility with
future Intel products.

8086/8088 1/0 Access Difterences

The 8086 can transfer either R or 16 bits at a time
to a device located in the 1/Q space. A 16-bit
device should be located at an even address so
that the word will be transferred in a single bus
cycle. An 8-bit device may be located a1 either an
even or odd address; however, the internal
registers in & given device must be assigned all-
even or all-odd addresses.

The 8088 transfers one byte per bus cycle. If a
16-bit device is used in the 8088 170 space, it must
be capable of transfersing words in the same
fashion, i.e., eight bits at a time in two bus eycles.
(The 8089 Input/Output Processor can provide a
straightforward interface between the 8088 and a
16-bit 170 device.} An 8-bit device may be located
at odd or cven addresses in the 8088 1/0 space
and interna! registers may be assigned consecutive
addresses (e.g., 1H, 2H, 3H). Assigning all-odd
or all-even addresses to these registers, however,
will simplify transferring the system to an 2086
CPU.

Memory-Mapped 1/0

170 devices also may be placed in the 8086/8088
memory space. As long as the devices respond like
memory components, the CPU does not know the
difference,

Memory-mapped [/0 provides additional pro-
gramming flexibility. Any instruction that
references memory may be used to access an I/O
port located in the memory space. For example,
the MOV (move) instruction <an transfer data
between any 8086/8088 register and a pore, or the
AND, OR and TEST instructions may be used to
mantpulate bits in 170 device registers. In addi-
tion, memory-mapped [/0 can take advantage of
the BORG/8088 memory addressing modes, A
group of terminals, for example, could be treated
as an array in memory with an index register

Mnemonlcs < Intel 1978
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selecting a terminal in the array. Section 2.10 pro-
vides examples of using the instruction set and
addressing modes with memory-mapped 170,

Of course, a price must be paid for the added pro-
gramming flexibility that memeory-mapped 170
provides. Dedicating part of the memory space to
[/O devices reduces the number of addresses
available for memory, although with a megabyte
of memory space this should rarely be a con-
siraint. Memory reference instructions also take
longer to execute and are somewhat Jess compact
than the simpler IN and OUT instructions.

Direct Memory Access

When configured in minimum mode, the 8086
and 808R provide HOLD (hold} and HLDA {hold
acknowledge) signals that are compatible with
traditional DMA controllers such as the 8257 and
8237. A DMA controller can reguest use of the
bus for direct transfer of data between an 1/0
device and memory by activating HOLD. The
CPU will cormplete the current bus cycle, if one is
in progress, and then issu¢ HLDA, granting the
bus to the DMA controller. The CPU will not
attempt to use the bus until HOLD goes inactive.

The 8086 addresses memory that is physically
organized in two separate banks, one containing
even-addressed bytes and one containing odd-ad-
dressed bytes. An 3-bit DMA controller must
alternately select these banks 10 access logically
adjacent bytes in memory. The 8089 provides a
simple way to interface a high-speed 8-bit device
to an 80B6-based system (see Chapter 3).

8089 Input/Output Processor (1OP)

The 8086 and RB088 are designed to be used with
the 8089 in high-performance 170 applications.
The 8089 conceptually resembles a
microprocessor with two DMA channels and an
instruction set specifically tailored for 1/0 opera-
tions. Unlike simple DMA controllers, the 3089
can service 1/0 devices directly, removing this
task from the CPU, In addition, it can transfer
data on its own bus or on the sysiem bus, can
match 8- or 16-bit peripherals to 8- or 16-bit
buses, and can transfer data from memory to
memory and from I/0 device 1o 1/0 device.
Chapter 3 describes the 8089 in detail.

2.5 Multiprocessing Features

As microprocessor prices have declined,
multiprocessing (using two or more coordinated
processors in a system) has become an increas-
ingly aitractive design alternative. Performance
can be substantially improved by distributing
system tasks among separate, concurrently exe-
cuting processors. In addition, multiprocessing
encourages a modular approach to design, uswally
resulting in systéms that are more easily main-
tained and enhanced. For example, figure 2-22
shows a multiprocessor system in which 1/0
activities have been delegated to an B089 10P.
Should an 17O device in the system be changed
{c.g., a hard disk substituted for a floppy), the
impact of the modification is confined to the 1/0
subsystem and is transparent 1¢ the CPU and (0
the application software.

The 8086 and 8088 are designed for the
multiprocessing environment. They have built-in
features that help solve the coordination prob-
lems that have discouraged mvultiprocessing
system development in the past.

Bus Lock

When configured in maximum mode, the 8036
and 8088 provide the LOCK (bus lock) signal.
The BIU activates LOCK when the EU executes
the one-bvte LOCK prefix instruction. The
LOCK signal remains active throughout execu-
tion of the instruction that follows the 1.OCK
prefix. Interrupts are nor affected by the LOCK
prefix. 1f another processor requests use of the
bus (via the request/grant lines, which are
discussed shortly), the CPU records the request,
but does not honor it until exccution of the locked
instruction has been completed.

Note cthat the 1LOCK signal remains active for the
duration of a single instruction. If two con-
secutive instructions are each preceded by a
LOCK prefix, there will still be an unlocked
period between these instructions. In the case of 2
locked repeated siring instruction, LOCK does
remain active for the duration of the block
operation.

When the 8086 or 8088 is configured in minimum
mode, the LOCK signal is not available. The
LOCK prefix can be used, however, (o delay the

Mnemanics - Iniel, 1978
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Figure 2-22, Multiprocessing System

generation of an HLDA response to a HOLD
request until execution of the locked instruction is
completed.

The LOCK signal provides information only. It is
the responsibility of other processars on the
shared bus to not attempt to obtain the bus while
LOCK is active. If the system uses 8289 Bus
Arbiters to control access 1o the shared bus, the
828%'s accept LOCK as an input and do not relin-
quish the bus while this signal is active,

LOCK may be used in multiprocessing systems ta
coordinate access to a common resource, such as
a buffer or a pointer. If access Lo the resource is
nol controlled, one processor can read an
erroneous value from the resource when another
processor is updating it (see figure 2-23).

Acceess can be controlled (see figure 2-24) by using
the LOCK prefix in conjunction with the XCHG
(exchange register with inemory) instruction. The
basis for controlling access 10 a given rescurce is a
semaphore, a software-settable flag or switch thai
indicates whether the resource is ‘*available™
(semaphore=0) or “busy” (semaphore=1). Pro-
cessors that share the bus agree by convention nol
to use the resource unless the semaphore indicates

that it is available. They likewise agree to set the
semaphore when they are using the resource and
to clear it when they are finished.

The XCHG instruction can obtain the current
value of the semaphore and set it 10 “*busy’" in a
single instruction. The Instruction, however,
requires two bus cycles 1o swap 8-bit values. It is
possible for another processor 1o oblain the bus
between these two cycles and to gain access to the
partially-updated semaphore. This can be
prevented by preceding the XCHG instruction
with a LOCK prefix, as Mlustrated in figure 2-25,
The bus lock establishes conirol over access to the
semaphore and thus to the shared resource.

WAIT and TEST

The 8086 and 5088 (in either maximum or
minimum mode} ¢an be synchronized to an exter-
nal event with the WAIT (wait for TEST) instruc-
tion and the TEST input signzl. When the EU
executes a WAIT instruction, the result depends
on the state of the TEST input line, If TEST is
inactive, the processor enters an idle state and
tepeatedly retests the TEST line at five-clock
intervals. If TEST s active, execution continyes
with the instruction following the WAIT.
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Figure 2-23. Uncontrolled Access to Shared

Escape

The ESC (escape) instruction provides a way for
another processor to obtain an instruction and/or
a memory operand from an 8086/8088 program.
When used in conjunction with WAIT and TEST,
ESC can initiate a *‘subroutine” that executes
concurrently in another processor (see figure
2-26).

Six bits in the ESC instruction may be specified by
the programmer when the instruction is written.
By monitoring the 8086/8088 bus and conirol
lines, another processor can capture the ESC
instruction when it is fetched by the BIU. The six
bits may then direct the external processor o per-
form some predefined activity.

If the BOR6/808K is configured in maximum
mode, the external processor, having determined
thai an ESC has been fetched, can monitor QS0

Resource
SHARED POINTER
BUSCVCLE  SEMAPHORE 1IN MEMORY PRCCESSOR ACTIVITIES
BUSCYCLE  SEMAPHORE
0 ) 05,22 {4C, 16
42" OBTAINS EXCLUSIVE
1 1 05, 22 [ 4c, 10 USE
2 1 ¢z, 59 |4c 18] "“A” UPDATES 1 WORD
"B TESTS SEMAPHORE
3 1 cz,59]4c,18) AND WAITS
a 1 ¢z, 59 31,08 “A" COMPLETES UPDATE
B TESTS SEMAPHORE
5 1 AND WAITS
6 0 Gz, 59]31,06] “'A" RELEASES RESOURCE
8" OBTAINS
7 1 €2, 591 31,05 | EXCLUSIVE USE
“B* READS
8 1 [esloros]  ulokfesvave
9 0 C2 59 [31,05] +8" RELEASES RESOURCE

Figure 2-24. Controlled Access to Shared Resource
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Figure 2-25. Using XCHG and LOCK

and QS| (the queue status lines, discussed in sec-
tion 2.6) and determine when the ESC instruction
is executed. If the instruction references memory
the external processor can then monitor the bus
and capture the operand’s physical address
and/or the operand itself.

Note that feiching an ESC instruction is not tan-
tamount to executing it. The ESC may be pre-
ceded by a jump ihat causes the queue to be
reinitialized. This event also can be determined
from the queue status lines.

Request/Grant Lines

When the 8086 or 8083 is configured in maximurm
mode, the HOLD and HLDA lines evolve into
two more sophisticated signals called RQ/GTO
and RQsGTI. These are bidirectional lines that
can be used to share a local bus between an 8036
or 5088 and two other processors via a handshake
sequence.

The request/grant sequence is a three-phase cycle:
request, grant and release. First, the processor
desiring the bus pulses a request/grant line. The
CPU returns a pulse on the same line indicating
thai it is entering the “*hold acknowledge’” state
and is relinquishing the bus. The BIU is logically
disconnected from the bus during this period. The

PROGESSOH

PROGESSOR .— o

CONTIMUE

RESULT
IS MEEDED

UNTIL *B"'a

TEST

Figure 2-26. Using ESC with WAIT and TEST

Mnamonics & el 1978

2-20



8086 AND B08B CENTRAL PROCESSING UNITS

EU, however, will continue to execute instruc-
tions until an instruction requires bus access or
the queue is emptied, whichever occurs first.
When the other processor has finished with the
bus, it sends a final pulse to the 8086/ 8088 in-
dicating that the request has ended and that the
CFPU may reclaim the bus,

RQ/GTO has higher priority than RQ/GTI. [
reguests arrive simultaneously on hoth lines, the
grant_goes 1o the processor on RQ/GTO and
RQ/GTI is acknowledged after the bus has been
returned to_the CPU. If, however, a request
arrives on RQ/GTO while the CPU is processing a
prior request on RQ/GT1, the second request is
not honored until the processor on RQ/GTI
releases the bus.

Multibus™ Architecture

Intel has designed a general-purpose
multiprocessing bus called the Multibus. This is
the standard design used in iSBC™ single-board
microcomputer products. Many other manufac-
turers offer products that are compatible with the
Mulitibus architecture as well. When the 8086 and
8088 are configured in maximum mode, the §288
Bus Controller outputs signals that are electrically
compatible with the Multibus protocol. Designers
of multiprocessing systems may want (0 consider
using the Multibus architecture in the design of
theit products to reduce development cost and

time, and to obtain compatibility with the wide
variety of boards available in the 18BC product
line.

The Multibus architecture provides a versarile
communications channel that can be used to coor-
dinate a wide variety of computing modules {see
figure 2-27). Modules in a Multibus system are
designated as masters or slaves. Masters may
obtain use of the bus and initiale data translers on
it. Slaves are the objects of data transfers only.
The Multibus architecture allows both &- and 16-
bit masters to be intermixed in a system. In addi-
tion to 16 data lines, the bus design provides 20
address lines, eight multilevel interrupt lines, and
controd and arbitration lines. An auxiliary power
bus also is provided to route standby power to
memories if the normal supply fails.

The Multibus architecture maintains its own
clock, independent of the clocks of the modules it
links together. This allows different speed masters
to share the bus and allows masters to operate
asvnchronously with respect to each other. The
arbitration logic of the bus permii slow-speed
masters to compete equably for use of the bus.
Once a module has obtained the bus, however,
transfer speeds are dependent only on tLhe
capabilities of the transmitiing and receiving
modules. Finally, the Multibus standard defines
the form factors and physical requirements of
modules that communicate on this bus. For a
complete description of the Muliibus archicec-
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Figure 2-27. Multibus™-Based System
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ture, refer to the Intel Multibus Specification
{document number 9800683} and Application
Note 284, ““Intel Multibus Interfacing.”

8289 Bus Arbiter

Multiprocessor systems require a means of coor-
dinating the processors’ use of the shared bus.
The &289 Bus Arbiter works in conjunction with
the 8288 Bus Controller {o provide this control
for 8086- and 8088-based systems. [t is compati-
ble with the Multibus architecture and can be used
in other shared-bus dasigns as well.

The 8289 eliminales race conditions, resolves bus
coniention and matches processors operating
asynchronousiy with respect to each other. Each
processor on the bus is assigned a different pri-
ority. When simultaneous requests for the bus
arrive, the 8289 resolves the contention and grants
the bus to the processor with the highest priority;
three different prioritizing technigues may be
used. Chapter 4 discusses the 8289 in more detail.

2.6 Processor Control and
Monitoring

Interrupis

The 8086 and 8088 have a simple and versatile
interrupt system. Every Interrupt is assigned a
tvpe code that identifies it to the CPU. The 8086

and 8088 can handle up to 236 different interrupt
types. Interrupts may be initiated by devices
external to the CPU; in addition, they also may be
triggered by software interrupt instructions and,
under certain conditions, by the CPU itself (see
figure 2-28). Figure 2-29 illustrates ihe basic
response of the 8086 and 8088 to an interrupt,
The next sections elaborate on the information
presented in this drawing.

External Interrupts

The 8086 and 8088 have two lines that external
devices may use to signal interrupts (INTR and
NMI). The INTR (Ilnterrupt Request) line is
uswally driven by an Intel® 82594 Programmable
Interrupt Controller (PIC), which is in turn con-
nected to the devices that need interrupt services.
The 8239A is a very flexible circuit thart is con-
trolled by software commands from the 8086 or
8088 (the PIC appears as a set of 1/0 ports to the
software). lts main job is to accept interrupt
requests from the devices attached to it, deter-
min¢ which requesting device has the highest
priority, and then activate the 8086/8088 INTR
line if the selected device has higher priority than
the device currently being serviced (if there is
ong).

When INTR is active, the CPU takes different
action depending on the state of the interrupt-
enable flag (IF). No action takes place, however,
until the currently-executing instruction has been
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completed.* Then, if iF is clear (meaning that
interrupts signaled ¢n INTR are masked or dis-
abled), the CPU ignores the interrupt request and
processes the next instruction. The INTR signal is
not latched by the CPU, so it must be held active
until a response is received ot the request is
withdrawn. If interrupts on INTR are enabied (if
IF is set), then the CPU recognizes the interrupt
request and processes it. [nterrupt requests arriv-
ing on INTR can be enabled by executing an 8TI
(set interrupt-enable flag) instruction, and dis-
abled by executing a CLI {clear interrupt-enable
flag) instruction. They also may be selectively
masked {some types enabled, some disabled) by
writing commands 1o the 8259A. It should be
noted that in order to reduce the likelihood of
excessive stack buildup, the STI and IRET
instructions will reenabte interrupts only after
the end of the following instruction,

The CPU acknowledges the interrupe request by
executing two consecutive interrupt acknowledge
{INTA) bus cycles. If & bus hold request arrives
{via the HOLD or request/grant lines) during the
[NTA eycles, it is not honored until the cycles
have been completed. In addition, if the CPU js
configured in maximum mode, it activates the
LOCK signal during these cyeles to indicate to
other processors that they should noe attempt to
obtain the bus. The first cycle signals the §239A
that the request has been honored. During the
second INTA cycle, the 8259A responds by piac-
ing a byte on the data bus that contains the inter-
upt type {0-255) associated with the device
requesting service. (The tvpe assignment is made
when 1he 8259A is initialized by software in the
3086 or 3088.) The CPU reads this type code and
uses it to call the corresponding interrupt
procedure.

An external intcrrupt request also may arrive on
another CPU line, NMI {non-maskable inter-
rupt). This line is edge-triggered (INTR is level-
triggered) and is generally used to signal the CPU
of a *“catastrophic™ event, such as the imminent
loss of power, memory error detection or bus
parity error. Interrupt requests arriving on NM1
cannot be disabled, are latched by the CPU, and
have higher priority than an interrupt request on
INTR. 1f an interrupt request arrives on both
lines during the execution of an instruction, NM]I
will be recognized first. Non-maskable interrupts
are predefined as type 2; the processor does nol
need (o be supplied with a type code to call the
NMI procedure, and it does not run the INTA bus
cycles in response to a request on NMI.

The time required for the CPU to recognize an
external interrupt request {interrupt latency)
depends on how many clock periods remain in the
execution of the current imstruction. On the
average, the lomngest latency occurs when a
multiplication, division or variable-bit shift or
rotate instruction is executing when the interrupt
request arrives (see section 2.7 for dctailed
instruction timing data). As mentioned pre-
viously, in a few cases, worst-case latency will
span (wo instructions rather than one.

Internal Interrupts

An INT (interrupt) instruction gEnerales an iner-
rupt immediately upon completion of its cxecu-
tien. The interrupt tvpe coded into the instruction
supplies the CPU with the type code needed to
call the procedure to process the interrupt. Since
any type code may be specified, sofrware inter-
Tupts may be used to test inierrupt procedures
Written to service externa) devices.

*There are a fow cases in which an interrupt request is not recognized until after the foifowing instruction. Repeat, LOCK

and segment override prefixes are considered “part of"’

the instructions they prefix; no interrupt is recognized between

execution of 4 prefix and an instruction. A MOV {move} 1o segment register instruction and a POP segment regisier
instruction are treated similarly: no interrupt is recognized untii afier the tollowing instruetion. This mechanism prolecis
a program that is changing to a new stack {by updating SS and SP). If an interrupt were recognized after SS had beern
changed, but before SP had been aliered. the processor would push the flags, €5 and IP into the wrong arca of memory.
It Follows [rom this that whenever a segment register and another value must be updated together, the segment register
should be changed first, followed immediately by the instruction that changes the other value. There are also (wo Cases,
WAILT and repeated striny instructions, where an interrupt request is recognized in the middic of an instruction. In these
cases, interrupts are accepied after any <ompleted primitive operation or wait test cycle,
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If the overflow flag (OF} is set, an INTO ({inter-
rupt on overflow) instruction generates a ype 4
interrupt immediately upon completion of its
execution.

The CPU itself generates a type O interrupt
immediately following execution of a DIV or
1IDIV (divide, integer divide) instruction if the
calculated quotient is larger than the specified
destination.

If the teap flag (TF) is sct, the CPU automatically
generates a type 1 interrupt following every
inscruction. This &s called single-step execution
and is a powerful debugging tool that is discussed
in mare detail shortly.

All internal interrupts {INT, INTO, divide error,
and single-step) share these characteristics:

1.  Theinterrupt type code is either contained in
the instruction or is predefined.

2. NoINTA buscycles are run.

3. lnternal interrupts cannot be disabled, except
for single-step.

4.  Any internal interrupt (except single-step}
has higher priority than any gxternal inter-
rupt {see table 2-3), If interrupt requests
arrive on NMI and/¢r INTR during execu-
tion of an instruction that causes an internal
interrupl te.g., divide errer), the internal
interrupt is processed first.

Interrupt Pointer Table

The interrupt pointer (or interrupt vector) table
ifigure 2-30) is the link between an interrupt type
cade and the procedure that has been designated
10 service interrupts associated with that code.
The interrupt pointer table occupics up to the firsi
1k bytes of low memory. There may be up to 256
entries in the table, one for each interrupt 1ype

C5 BASE ADDRESS
IPOFFSET

¢ IFFH
| TYPE 255 POINTER
(RYAILABLE)
IFCH
§ "y
AVAILABLE
INTEARUPT K T
POINTERS
s224 | tvPE 33 POINTER
AVAILABLE:
08aH
TYPE 32 POINTER
—  (AVAILABLE:
L. qBOH
TFH
" rvee i poiNTER
{RESERVED!
RESERVED 1
INTERRUPT g
POINTERS N -
iz
| TYPES POINTER-  _|
IRESERVED),
 oneH
| TYPE 4 POINTER 1
OVERFLOW
0104
| TYPEIPOINTER. |
ovcea] 1-BVTE INTINSTRUCTION
DEDICATED
INTERRUPT | TYPE 2 POINTER
POINTERS HON MASKABLE
154 00EH
| 1tPETPOINTER |
SINGLE-STEP
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| TYPEQPOINTER
DIViDE ERROR
% CUOH
| 16 BITS

Figure 2-30. Interrupt Pointer Table
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that can oceur in the system. Each entry in the
table is a doubleword pointer containing the
address of the procedure that is 1o service inter-
rupts of that type. The higher-addressed word of
the pointer contains the base address of the seg-
ment contlaining the procedure. The lower-ad-
dressed word contains the procedure’s offset
from the beginning of the segment. Since each
entry is four bytes long, the CPU can calculate the
location of the correct entry for a given interrupt
type by simply multiplying (type*4).

Table 2-3. Interrupt Priorities

INTERRUPT PRIORITY
Divide error, INT n, INTO highest
NMI
INTR
Single-step lowest

Space at the high end of the table that would be
eccupied by entries for interrupt types that cannoi
occur in a given application may be used for other
purposes. The dedicated and reserved portions of
the interrupt pointer table (locations OH through
TFH), however, should not be used for any other
purpose to insure proper svstem operation and to
preserve compatibility with future Intel hardware
and software products.

After pushing the flags onto the stack, the 8086 or
8088 activates an interrupt procedure by exe-
cuting the equivalent of an intersegment indirect
CALL instruction. The target of the “CALL*" is
the address contained in the interrupt pointer
table element located at (type*4). The CPU saves
the address of the next instruction by pushing C$
and IF onto the stack. These are then replaced by
the second and first words of the table element,
thus transferring control to the procedure,

If multiple interrupt requests arrive simulta-
necusly, the processor activates the interrupt pro-
cedures in priority order. Figure 2-31 shows how
procedures would be activated in an extreme case.
The processor is running in single-step mode with
external interrupts enabled. During execution of a
divide instruction, INTR is activated. Further-
more the instruction generates a divide error
interrupt. Figure 2-31 shows that the interrupts

are recognized in turn, in the order of their
priorities except for INTR. INTR is not recog-
nized until after the following instruction because
recognition of the earlier interrupts cleared IF, Of
couse interrupts could be reenabled in any of the
interrupt response routines if earlier response to
INTR is desired.

As figure 2-31 shows, all main-line code is exe-
cuted in single-step mode. Also, because of the
order of interrupt processing, the opportunity
exists in each occurrence of the single-step routine
to select whether pending interrupt routines
{divide error and INTR routines in this example)
are executed at full speed or in single-step mode.

Interrupt Procedures

When an interrupt service procedure is entered,
the flags, CS, and IP are pushed onto the stack
and TF and IF are cleared. The procedure may
reenable external interrupts with the STI (set
interrupt-enable flag) instruction, thus allowing
itsell to be interrupted by a request on INTR.
(Note, however, that interrupts are not actuafly
enabled unil the instruction foifowing STI has
executed.) An interrupt procedure always may be
interripted by a request arriving on NMIL.
Software- or processor-initiated interrupts
occurring within the procedure alse will interrupe
the procedure. Care must be taken in interrupt
procedures that the type of interrupt being ser-
viced by the procedure does not itsell inadver-
tently occur within the procedure. For example,
an attemps to divide by 0 in the divide error (1ype
) interrupt procedure may result in the procedure
being reentered endlessly. Enough stack space
must be available 10 accommodate the maximum
depth of interrupt nesting that can occur in the
system.

Like all procedures, interrupt procedures should
save any registers they use before updating them,
and restore them before terminating. 1t is good
practice for an interrupt procedure to enable
external interrupts for all but ““critical sections®’
of code (those sections that cannot be interrupted
without risking erroneous results). If external
interrupts are disabled for too long in a pro-
cedure, interrupt requests on INTR can potett-
tially be lost.
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Figure 2-31. Processing Simultancous Interrupts
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All interrupt procedures should be terminated
with an IRET (interrupt return) instruction. The
IRET instruction assumes that the stack is in the
same condition as it was when the procedure was
entered. 1t pops the top three stack words into 1P,
CS and the flags, thus returning to the instruction
that was abour to be executed when the interrupt
procedure was activated.

The actual processing done by the procedure is
dependent upon the application. If the procedure
is servicing an external device, it should oulput a
command to the device instructing it to remove its
interrupt request. I might then read status
information from the device, determine the cause
of the interrupt and then take action accordingly.
Section 2,10 contains three typical interrupt pro-
cedure examples.,

Software-initiated interrupt procedures may be
used as service rowtines (**supervisor calls'’) for
other programs in the system. Tn this case, the
interrupt procedure is activated when a program,
rather than an external device, needs attention.
{The “‘attention”’ might be to search a file for a
record, send a message to anolher program,
request an allocation of free memory, etc.) Soft-
ware interrupt procedures can be advantageous in
systems that dynamically relocate programs dur-
ing execution. Since the interrupt pointer table is
at a lixed storage location, procedures may
“call’” each other through the table by issuing
software interrupt instructions. This provides a
stable communication ‘‘exchange’” that is
independent of procedure addresses, The inter-
tupt procedures may themselves be moved so long
as the interrupt pointer table always is updated to
provide the linkage from the “*calling’” program
via the interrupt type code.

Single-Step (Trap) Interrupt

When TF (the trap flag) is set, the 8086 or 8088 is
said o be in single-step mode. In this mode, the
processor automatically gencrales a type 1 inter-
rupt after each instruction. Recall that as part of
its interrupt processing, the CPU automatically
pushes the flags onto the stack and then clears TF
and IF. Thus the processor is not in single-step
mode when the single-step interrupt procedure is
entered; it runs normally, When the single-step
procedure terminates, the old flag image is
restored from the stack, placing the CPU back
into single-step mode.

Single-stepping is a valuable debugging tool, It
allows the single-step procedure to act as a **win-
dow'" into the system through which operation
can be observed instruction-by-instruction. A
single-step interrupt procedure, for example, can
print or display register contents, the value of the
instruction pointer (it is on the stack}, key
memory variables, ete., as they change after each
instruction. In this way the exact flow of a pro-
gram can be traced in detail, and the point at
which discrepancies occur can be determined.
Other possible services that could be provided by
a single-step routine include;

¢ Writing a message when a specified memory
location or 170 port changes value (or equals
aspecified value).

* Providing diagnostics selectively (only for
certain instruction addresses for instance).

*  Letting a routine execute a number of times
before providing diagnostics.

The 8086 and 8088 do not have instructions for
setting or clearing TF direcily. Rather, TF c¢an be
changed by modifying the flag-image on the
stack. The PUSHF and POPF instructions are
available for pushing and popping the flags
directly (TF can be set by ORing the flag-image
with 0100H and cleared by ANDing it with
FEFFH). After TF is set in this manner, the First
single-step interrupt occurs after the first
instruction following the IRET from the single-
step procedure.

If the processor is single-stepping, it processes an
interrupt {either internal or external) as follows.
Control is passed normally (flags, CS and IP are
pushed) to the procedure designaied 1o handle the
type of interrupt that has occurred. However,
before the first instruction of that procedure is
executed, the single-step interrupt is “‘recog-
nized”” and control is passed normaliy (flags, CS
and [P are pushed) to the type | interrupt pro-
cedure. When single-step procedure terminates,
control returns 1o the previous interrupt pro-
cedure. Figure 2-3t illustrates this process in a
case where two interrupts occur when the pro-
cessor is in single-step mode.

Breakpoint interrupt

A type 3 interrupt is dedicated to the breakpoint
interrupt. A breakpoint is generally any place ina
program where normal execution is arrested so

Mnemaonics @ intel, 1978

2-28

L L



8086 AND 8088 CENTRAL PROCESSING UNITS

that some sort of special processing may be per-
formed. Breakpoints typically are inserted into
programs during debugging as a way of display-
ing registers, memory locations, etc., at crucial
points in the program.

The INT 3 (breakpoint} instruction is one byte
long. This makes it easy to “*plant’’ a breakpoint
anywhere in a program. Section 2.10 contains an
example that shows how a breakpoint may be set
and how a breakpoint procedure may be used to
place the processor into single-step mode.

The breakpoint instruction also may be used to
“patch™ a program (insert new instructions)
without recompiling or reassembling il. This may
be done by saving an instruction byte, and replac-
ing it with an INT 3 (CCH) machine instruction.
The breakpoint procedure would contain the new
machine instructions, plus code to restore the
saved instruction byte and decrement 1P on the
stack before returning, so that the displaced
instruction would be executed after the patch
insiructions. The breakpoint ¢xample in section
2.10 illustrates these principles.

Note that patching a program requires machine-
instruction programming and should be under-
taken with considerable caution; it is easy to add
new bugs to a program in an attempl (0 ¢orrect
existing ones. Note also that a patch is only a tem-
porary meagure 10 be used in exceptional condi-
tions. The affected code should be updated and
retransiated as soon as possible,

System Reset

The 8086/8088 RESET line provides an orderly
way Lo start or restart an executing system. When
the processor detects the positive-going edge of a
pulse on RESET, it terminates all activities until
the signal goes low, at which time it initializes the
system as shown in table 2-4,

Since the code segment register contains FFFFH
and the instruction pointer contains OH, the pro-
cessor executes irs first imstruction following
sysiem reset from absolute memory locaiion
FFFFOH. This location normally contains an
intersegment direct JMP instruction whose target
is the actual beginning of the system program.
The LOC-86 utility supplies this IMP instruction
from information in the program that identifics
its first instruction. As external {maskable) inter-

rupls are disabled by system resel, the system
software should reenable interrupts as soon as the
system is initialized to the point where they can he
progessed.

Table 2-4. CPU State Following RESET

CPU COMPONENT CONTENT
Flags Claar
Ingtruction Pointer 00004

CS Register FFFFH

DS Register 0000H

585 Register 0000H

ES Register 0000H
Queue Empty

Instruction Queuse Status

When configured in maximum mode, the 8086
and 8088 provide information about instruction
queue operations on lines QS0 and QS1. Table 2-5
interprets the four siates that these limes can
represent.

The queue status lines are provided for external
processors  that receive instructions and/or
operands via the 8086/8088 ESC (escape) instruc-
tion (see sections 2.5 and 2.8). Such a processor
may moenitor the bus to see when an ESC instruc-
tion is fetched and then track the instruction
through the gueve to determine when (and if) the
instruction is executed.

Table 2-5. Queue Status Signals
(Maximum Mode Only)

QUEVE OPERATION IN LAST

QSp| 084 CLK CYCLE

0 0 [Nocperation; default value

0 i |First byte of an instruction was
taken from the gueue

1 0 [Queue was reinitialized

1 1 |[Subsequent byte of an instruction
was taken from the queue

Processor Halt

When the HLT (halt) instruction (see section 2.7)
15 execuled, the 8086 or 8088 enters the halt siate.
This condition may be interpreted as “stop all
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operations until an external interrupt ¢geurs or
the system is reset.”” No signals are floated during
the halt state, and the content of the address and
data buses is undefined. A bus hold request
arriving on the HOLD line {(mirimum mode) or
either request/grant line (maximum mode) is
acknowledged normally while the processor is
halted.

The halt state can be used when an event prevents
the system from Functioning correctly. An exam-
ple might be a power-fail interrupt. After
recognizing that loss of power is imminent, the
CPU could use the remaining time to move
registers, flags and vital variables to (for example)
a battery-powered CMOS RAM area and then
halt until the return of power was signaled by an
intetrupt or systern reset,

Status Lines

When configured in maximum mode, the 8086
and 8088 emit eight status signals that can be used
by external devices. Lines 50, 31 and 33 identify
the type of bus cycle that the CPU is starting to
execure (table 2-6). These lines are typically
decoded by the 8288 Bus Controller. 33 and S4
indicate which segment register was used to con-
struct the physical address being used in this bus
cycle (see table 2-7). Line 85 reflects the state of
the interrupt-cnable flag. 56 is always 0. S7 is &
spare line whose content is undefined.

Table 2-6. Bus Cycle Status Signals

S»1 8|5 TYPES OF BUS CYCLE
Interrupt Acknowledge
Read 11O
Write 110
HALT

Instruction Feich
Read Memory

Write Memaory
Passive; no bus cycle

R R ey . WY
Y ==

Table 2-7, Segment Register Status Lines

STRET SEGMENT REGISTER

¢] 0| ES
6|1 ]8&s
i 0 | CSornone{l/Oorinterrupt Vector)
111|085

2.7 Instruction Set

The 8086 and B088 execute exactly the same
instructions. This instruction set includes
equivalents to the instructions typically found in
previous microprocessors, such as the 8080/8085.
Significant new operations in¢lude:

* multiplication and division of signed and
unsigned binary numbers as well as unpacked
decimal numbers,

* move, scan and compare operations for
strings up to 64k bytes in length,

* non-destructive bit testing,
*  byte translation from one code to another,
* software-generated interrupts, and

= a group of instructions that can help
coordinate the activities of multiprocessor
syslems.

These imstructions trear different types of
operands uniformly. Nearly every instruction can
operate on either byte or word data. Register,
memory and immediate operands may be
specified interchangeably in most instructions (ex-
cept, of course, that immediate values may only
serve  as  “‘source™ and not  ‘‘destination”
operands). In particular, memory variables can be
added to, subtracted from, shifted, compared,
and so on, in place, without moving them in and
out of registers. This saves instructions, registers,
and execution time in assembly language pro-
grams. In high-level languages, where most
variables are memory based, compilers, such as
PL/M-86, can produce faster and shorter object
programs.

The 8086/8088 instruction set can be viewed as
existing at two levels: the assembly level and the
machine level. To the assembly language pro-
grammer, the 8086 and 8088 appear to have a
repertoire of about 100 instructions. One MOV
(move) instruction, for example, transfers a byte
or a word from a register or a memory location or
an immediate value to either a register or a
memory location. The 8086 and 8088 CPUs,
however, recognize 28 different MOV machine
instructions (‘‘move byte register to memory,’’
“move word immediate to register,” ei¢.)., The
ASM-86 assembler translates the assembly-level
instructions written by a programmer into the
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machine-level instructions that are acrually exe-
cuied by the 8086 or 3088. Compilers sach as
PL/M-86 translate high-level language statements
directly into machine-level instructions.

The two levels of the instruction set address two
different requirements: efficiency and simplicity.
The numerous—there are about 300 in all—forms
of machine-level instructions allow these instruc-
tions to make very efficient use of storage. For
example, the machine instruction that increments
a memory operand is three or four bytes long
because the address of thc operand must be
encoded in the instruction. To increment a
register, however, does not require as much
information, so the instruction can be shorter. In
fact, the 8086 and 8088 have eight different
machine-level instructions that increment a dif-
ferent 16-bit register; these instructions are only
one bytelong.

If a programmer had to write one instruction to
increment a register, another 10 increment a
memory variable, etc., the benefit of compact
instructions would be oifset by the difficulty of
programming. The assembly-level instructions
simplify the programmer’s view of the instruciion
set. The programmer writes one form of the INC
(increment) iastruction and the ASM-86
assembler examines the operand to determine
which machine-level instruction to generate.

This section presents the 8086/8088 instruction
sel from Lwo perspectives. First, the assembly-
level instructions are described in functional
terms. The assembly-level instructions are then
presented in a reference table that breaks out all
permissible operand combinations with execution
times and machine instruction length, plus the
effect that the instruction has on the CPU flags.
Machine-level mstruction encoding and decoding
are covered in section 4.2.

Data Transfer instructions

The 14 data transfer instructions (table 2-8} move
single byvtes and words beiween memory and
registers as well as between register AL or AX and
170 ports. The stack manipulation instructions
are included in this group as are instructions for
transferring flag contents and for loading seg-
ment registers.

Table 2-8. Data Transfer [nstructions

GENERAL PURPOSE
MOV Movea byle or word
PUSH Puszh word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte
INPUT/QUTPUT
IN Input byte or word
ouT Cutput byte or word
ADDRESS OBJECT
LEA Load effective address
LDS Load pointer using B3
LES Load pointer using ES
FLAG TRANSFER
LAHF Load AH register from flags
SAHF Store AH register in fiags
PUSHF Push flags onto stack
POPF Pop flags off stack

General Purpose Data Transters
MOV dastination, source

MOY transfers a byte or a word from the scurce
operand to the destination operand.

PUSH source

PUSH decrements SP {the stack pointer) by two
and then transfers a word f{rom the source
operand to the top of stack now peinted o by SP.
PUSH often is used to place parameters on the
stack before calling a procedure: more generally,
it is the basic means of storing t¢mporary data on
the stack.

POP destination

POP transfecrs the word at the current top of stack
{pointed to by SP) to the destination operand,
and then increments SP by iwo 0 poeint 10 the
new top of stack. POP can be used to move tem-
porary variables from the stack to registers or
Memory.

231
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XCHG destination, source

XCHG (exchange} switches the contents of the
source and destinatton (byle or word) operands.
When used in conjunction with the LOCK prefix,
XCHG can test and set a semaphore that controls
access Lo a resource shared by multiple processors
(see section 2.5).

XLAT fransiate-table

XLAT (wranslate) replaces a byte in the AL
register with a byte from a 256-byte, user-coded
translation table. Register BX is assumed to point
10 the beginning of the table. The byte in AL is
used as an index into the table and is replaced by
the byte at the offset in the table corresponding to
AL’s binary value. The first byte in the table has
an offset of 0. For example, if AL contains SH,
and the sixth element of the translation table con-
tains 33H, then AL will contain 33H following
the instruction. XLAT is useful for translating
characters from one code to another, the classic
example being ASCIL to EBCDIC or the reverse,

IN accumulator, port

IN transfers a byte or a word from an input port
to the AL register or the AX register, respectively.
The port number may be specified either with an
immediate byte constant, allowing access to ports
numbered 0 through 255, or with & number
previously placed in the DX register, allowing
variable access (by changing the value in DX) to
ports numbered from 0 through 63,5335,

QUT port, accumuiator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, 1o an out-
put port. The port number may be specified cither
with an immediate byte constant, allowing access
10 ports numbered O through 235, or with a
number previously placed in register DX, allow-
ing variable access (by changing the value in DX)
10 poris numbered from 0 through 65,535,

Address Object Transfers

These instructions manipulate the addresses of
variables rather than the contents or values of
variables, They are most useful for list process-
ing, based variables, and string operations.

LEA destination, source

LEA (load effective address) transfers the offset
of the source operand (rather than its value) to the
destination operand. The source operand must be
a memory operand, and the destination operand
must be a 16-bit general register. LEA does not
affect any flags. The XLAT and string instrue-
tions assurne that certain registers point 1o
operands; LEA can be used to load these registers
{e.g.. loading BX with the address of the translate
table used by the XLAT instruction),

LDS destination, source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, 1o the destination
operand and register DS. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg-
ment word of the pointer is transferred to register
DS, Specifying SI as the destination operand is a
Conmvenignt way Lo prepare to process a source
string that is not in the current data segment
(string instructions assume that the source string
is located in the current data segment and thar SI
contains the offset of the string).

LES desiination, source

LES (ioad pointer using ES) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register ES. The offsel word of the
pointer is transferred to the destination operand,
which rmay be any 16-bit general register. The seg-
ment word of the pointer is transferred to register
ES. Specifying DI as the destination operand is a
convenient way to prepare to process a destina-
tion string that is not in the current extra segment.
{The destination string must be located in the
extra segment, and DI must contain the offset of
the string.)

Flag Transfers

LAHF

LAHF (load register AH from flags) copies ST,
ZF, AF, PF and CF (the 8080/8085 flags) into
bits 7, 6, 4, 2 and 0, respectively, of register AH
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(see figure 2-32). The content of bits 5, 3 and 1 is
undefined; the flags themselves are not affected.
LAHF is provided primarily for converting
80808085 assembly language programs o run on
an 8086 or 8088,

SAHF

SAHF (store register AH into flags) transfers bits
1,6, 4,2 and O from register AH into SF, ZF, AF,
PF and CF, respectively, replacing whatever
values these flags previousiy had. OF, DF, IF and
TF are not affected. This instruction is provided
for 8080/8085 compatibility.

PUSHF

PUSHF decrements SP {the stack pointer) by two
and then transfers all flags to the word at the top
of stack pointed 1o by SP (see figure 2-32). The
flags themselves are not affected.

POPF

POPF ransfers specific bits from the word at the
current top of stack (pointed to by regisier SP)
into the B0B6/B0ORR flags, replacing whatever
values the flags previously contained (see figure
2-32). SP is then incremented by two to point to
the new top of stack. PUSHF and POPF allow 2
procedure to save and resicre a calling program’s
flags. They also allow a program to change the

LAHF,
SAHF

IS Z l.II.l\ u P|U|CI

|?0543210|

1-=——80303/8085 FLAG 5—=]
1 |
| |

PUSHF,
POPF lvv,vv,0p v, T5, 2 u,80,pP,uc
16 141312 1110 ¢ & 7 & 5 4 3 2 1 40

UNDEFINED; VALLE IS INDETERMINATE
OVERFLOW FLAG

CIRECTION FLAG

NTERRUPT ENABLE FLAG

TRAP FLAG

ZERQ FLAG

= AUXILIARY CARRY FLAG
= FARITY FLAG

= CAARY FLAG

TP RNO=S—=00C

Figure 2-32. Flag Storage Formats

setting of TF (there is no instruction for updating
this flag directly). The change is accomplished by
pushing the flags, altering bit & of the memory-
image and then popping the (lags.

Arithmetic Instructions

Arithmetic Data Formats

8086 and B088 arithmetic operations {(table 2-9)
may be performed on four types of numbers:
unsigned binary, signed binary (integers),
unsigned packed decimal and unsigned unpacked
decimal (see table 2-10). Binary numbers may be 8
or 16 bits long. Decimal numbers are stored in
bytes, two digits per byte for packed decimal and
one digit per byte for unpacked decimal. The pro-
cessor always assumes that the operands specified
in arithmetic insiructions contain data thar repre-
sent valid numbers for the type of instruction
being performed. Invalid data may produce
unpredictable results.

Table 2-9. Arithmetic Instructions

ADDITICN
ADD Add byte or word
ADC Add byte or word with carry
ING Increment byte or word by 1
AAA ASCI adjust for addition
DAA Decimal adjust for addition
SUBTRACTION
SUB Subtract byte or word
$BB Subtract byte or word with
borrow
DEC Dacrement byte orword by 1
MEG Negate byte or word
CMP Compare byte or word
AAS ASCI adjust for subtraction
DAS Decimal adjust for subtraction
MULTIPLICATION
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCIl adjust for muitiply
DIVISION
DIV Divide byte or word unsigned
o Integerdivide byte or word
AAD ASCIl adjust for division
cBw Convert byte to word
CWD Convert word to doubleword
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Table 2-10. Arithmetic Interpretation of 8-Bit Numbers

x| omeamen | vieeneo [ sanen [uwacten | macren
07 0000CD01 11 7 +7 7 7

89 10001001 137 -119 invatid 8%

Ch 11000101 197 -5% invalid inva¥id

Unsigned binary nwmbers may be either § or 16
bits long; ail bits are considered in determining a
number’s magnitude. The value range of an 8-bit
unsigned binary number is 0-253; 16 bits can
represent values from 0 through 65,535, Addi-
tion, subtraction, multiplication and division
operations are available for unsigned binary
numbers.

Signed binary numbers {integers) may be either 8
or 16 bits long. The high-order (leftmosn bit is
interpreted as the number’s sign: 0 = positive and
1 = negative. Negative numbers are reptesented
in standard (wo's complement notation. Since
the high-order bit is used for a sign, the range of
an B-bit integer is —128 through +127; 16-bit
integers may range from -32,768 through
+32,767. The valve zero has a positive sign.
Multiplication and division operations are pro-
vided for signed binary numbers. Addition and
subtraction arc performed with the unsigned
binary instructions. Conditional jump instruc-
tions, as well as an “‘interrupt on overflow”
instruction, can be used following an unsigned
operation on an integer 1o detect overflow into
the sign bit.

Packed decimal numbers are stored as unsigned
byte quantities. The byte is treated as having one
decimal digil in each half-byie (nibble); the digit
in the high-order half-byte is the most significant.
Hexadecimal values 0-9 are valid in each half-
byte, and the range of a packed decimal number is
0-99. Addition and subtraction are performed in
two steps. First an unsigned binary instruction is
used Lo produce an intermediate result in register
AL. Then an adjustment operation is performed
which changes the intermediate value in AL 10 a
final correct packed decimal result., Multiplica-
tion and division adjustments are not available
for packed decimal numbers.

Unpacked decimal numbers are stored as un-
signed byte quantities. The magniinde of the
number is deterrnined from the low-order half-
byte; hexadecimal values 0-9 are valid and are
interpreted as decimal numbers, The high-order
half-byte must be zero for multiplication and divi-
sion; it may contain any value for addition and
subtraction. Arithmetic on unpacked decimal
numbers is performed in two steps. The unsigned
binary addition, subtraction and mulftiplication
operations are used to produce an intermediate
result in register AL. An adjustment insteuction
then changes the value in AL w0 a final correct
unpacked decimal number. Division is performed
similarly, except that the adjustment is carried ol
on the pumerator operand in register AL first,
then z following unsigned binary division instruc-
tion produces a correct result.

Unpacked decimal numbers are similar to the
ASCII character representations of the digits 0-9.
Note, however, that the high-order half-byte of
an ASCH numeral is always 3H. Unpacked
decimal arithmetic may be performed on ASCII

numeric characters under the following

conditions:

= the high-order half-byte of an ASCII
numeral must be set to OH prior 0
multiplication or division.

® uppacked decimal arithmetic leaves the

high-order half-byte set to OH; it must be set
to 3H to produce a valid ASCIH numeral,

Arithmetic Instructions and Flags

The §086/8088 arithmetic instructions post <er-
tain characteristics of the result of the operation
to six flags. Most of these flags can he tested by
following the arithmetic instruction with a condi-
tional jump instruction; the INTO {interrupt on
overflow} instruction also may be used. The
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various instructions affect the flags differently, as
explained in the instraction descriptions.
However, they follow these general rules:

¢ CF {carry flag): If an addition results in a
carry out of the high-order bit of the result,
then CF is set; otherwise CF is cleared. If a
subtraction results in a borrow into the high-
order bit of the result, then CF is set; other-
wise CF is cleared. Note that a signed carry is
indicated by CF # OF, CF can be used to
detect an unsigned overflow. Two instruc-
tions, ADC (add with carry) and SBB {sub-
tract with borrow), incorporate the carry flag
in their operations and can be used to per-
form multibyte (e.g., 32-bit, é4-bit) addition
and subtraction.

o AT (auxiliary carry flag); If an addition
results in a carry out of the low-order hali-
byte of the resuit, then AF is set; otherwise
AF is cleared. If a subtraction results in a
borrow inio the low-order half-byte of the
result, then AF is set; otherwise AF is
cleared, The auxiliary carry flag is provided
for the decimal adjust instructions and
ordinarily is not used for any other purpose.

» SF (sign flag): Arithmetic and logical
instructions set the sign flag equal to the
high-order bit (bit 7 or 15) of the result. For
signed binary numbers, the sign flag will be 0
for positive results and 1 for negative results
(50 long as overflow does not occur). A con-
ditional jump instruction can be used follow-
ing addition or subtraction to alter the flow
of the program depending on the sign of the
resuls. Programs performing unsigned opera-
tions typically ignore SF since the high-order
bit of the result is interpreted as a digit rather
than a sign.

s ZF (zero flag): If the result of an arithmetic
or logical operation is zerg, then ZF is set;
otherwise ZF is cleared. A conditional jump
instruction can be used 1o alter the flow of
the program if the result is or is not zero.

s PF (parity flag): If the low-order eight bits of
an arithmetic or logical result contain an
even nuimber of 1-bits, then the parity flag is
sel; otherwise it is cleared. PF is provided for
808078085 compatibility; it also can be used
to check ASCII characters for correct parity.

* QOF (overflow flag): If the result of an
operation is too large a positive number, or
too small a negative number to fit in the
destination operand (excluding the sign bit),
then OF is set; otherwise OF is cleared. OF
thus indicates signed arithmetic overflow; it
can be tested with a conditional jump or the
INTO (interrupt on overflow) instruction.
OF may be ignored when performing
unsigned arithmetic.

Addition

ADD destination, source

The sum of the two operands, which may be bytes
or words, replaces the destination opetand. Both
operands may be signed or unsigned binary
numbers (see AAA and DAA). ADD updates AF,
CF, OF, PF, SF and ZF.

ADC destination, source

ADC (Add with Carry) sums the operands, which
may be bytes or words, adds one if CF is set and
replaces the destination operand with the result.
Both operands may be signed or unsigned binary
numbets (see AAA and DAA). ADC updates AF,
CF, OF, PF, SF and ZF. Since ADC incorporates
a carry from a previous operation, it can be used
to write routines to add numbers longer than 16
bits.

ING destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is wreated as an unsigned binary number (see
AAA and DAA). INC updates AF, OF, PF, SF
and ZF; it does not affect CF.

AAA

AAA (ASCII Adjust for Addition) changes the
contents of register AL to a valid unpacked
decimal number; the high-order hali-byte is
zeroed, AAA updates AF and CF; the content of
OF, PF, ST and ZF is undefined following ¢xecu-
tion of AAA.
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DAA

DAA (Decimal Adjust for Addition) corrects the
result of previously adding two valid packed
decimal operands (the destination operand must
have been register AL). DAA changes the content
of AL to a pair of valid packed decimal digits. bt
updates AF, CF, PF, SF and ZF: the content of
OF is undefined following execution of DAA.

Subtraction

SUB destination, source

The source operand is subiracted from the
destination operand, and the result replaces the
destination operand. The operands may be bytes
ot words. Both operands may be signed or
unsigned binary numbers (see AAS and DAS),
SUB updates AF, CF, OF, PF, SF and ZF.

SBB destination, source

SBB (Subtract with Borrow) subtracts the source
from the destination, subtracts one if CF is ser,
and returns the result 10 the destination operand.
Both operands may be bytes or words. Both
operands may be signed or unsigned binary
numbers (sec AAS and DAS). SBB updaies AF,
CF, OF, PF, 5F and ZF. Since it incorporates a
borrow from a previous operation, SBB may be
used to write routines that subiract numbers
longer than 16 bits.

DEC destination

DEC (Decrement) subtracts one from the destina-
tion, which may be a byte or a word, DEC
updates AL, OF, PF, SF, and ZF; it does not
affect CF.

NEG destination

NEG (Negate) subtracts the desiination operand,
which may be a byte or a word, from 0 and
returns the result to the destination. This forms
the two’s complement of the number, effectively
reversing the sign of an integer, If the operand is
zero, its sign is not changed. Attempting to negate
a byte containing —128 or a word coniaining

—32,768 causes no change to the operand and sets
OF. NEG updates AF, CF, OF, PF, SF and ZF.
CF is always set except when the operand is 7ero,
in which case it is cleared.

CMP destination, source

CMP (Compare) subtracts the source from the
destinalion, which may be bytes or words, but
does not return the result. The operands are
unchanged, but the flags are updated and can be
tested by a subsequent conditional jump instruc-
tion. CMP updates AF, CF, OF, PF, SF and ZF.
The comparison reflected in the flags is that of the
destination Lo the source, If a CMP instruction is
followed by a JG (jump if greater) instruction, for
gexample, the jump is taken if the destination
operand is grealer than the source operand.

AAS

AAS (ASCII Adjust for Subtraction) corrects the
rcsult of a previous subtraclion of two valid
unpacked decimal operands (the destination
operand must have been specified as register AL).
AAS changes the conlent of AL to a valid
unpacked decimal number; the high-order half-
byte is zeroed. AAS updates AF and CF: the con-
tent of OF, PF, SF and ZF is undefined following
execution of AAS,

DAS

DAS (Decimal Adjust for Subtraction) cotrects
the result of a previous subtraction of two valid
packed decimal operands (the destination
operand must have been specified as register AL).
DAS changes the content of AL to a pair of valid
packed decimal digits. DAS updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAS.

Multiplication

MUL souice

MUL (Multiply) performs an unsigned mulei-
plication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length
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result is returned in AH and AL. If the source
operand is a2 word, then it is multiplied by register
AX, and the double-length result is returned in
registers DX and AX. The operands are treated as
unsigned binary numbers (see AAM). If the upper
half of the resuit (AH for byte source, DX for
word source) is nonzero, CF and OF are set;
otherwise they are cleared. When CF and OF are
set, they indicate that AH or DX contains signifi-
cant digits of the result. The content of AF, PF,
SF and ZF is undefined following e¢xecution of
MUL.

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by regisier AL, and the double-length
result is returned in AH and AL. If the source isa
word, then it is multiplied by register AX, and the
double-length result is returned in registers DX
and AX. If the upper half of the resuit (AH for
byte source, DX for word source) is not the sign
extension of the lower half of the result, CF and
OF are set; otherwise they are ¢leared. When CF
and OF are set, they indicate that AH or DX con-
tains significant digits of the result. The content
of AF, PF, SF and ZF is undefined following
execution of IMUL.

AAM

AAM (ASCI Adjust for Multiply) corrects the
result of a previous multiplication of two valid
unpacked decimal operands. A wvalid 2-digit
unpacked decimal number is derived from the
content of AH and AL and is returned to AH and
AL. The high-order half-bytes of the multiplied
operands must have been OH for AAM to pro-
duce a correct result. AAM updates PF, SF and
ZF; the content of AF, CF and OF is undefined
following execution of AAM.

Division
DIV source
DIV (divide) performs an unsigned division of the

accumulator {and its extension) by the source
operand. If the source operand is a byte, it is

divided into the double-iength dividend assumed
to be in registers AL and AH. The single-length
quotient is returned in AL, and the single-length
remainder is returned in AH. If the source
operand is a word, it is divided into the double-
length dividend in registers AX and DX. The
single-length quotient is returned in AX, and the
single-length remainder is returned in DX. If the
quotient exceeds the capacity of its destination
register (FFH for byte source, FFFFFH [or word
source), as when division by zero is aitempted, a
type 0 interrupt is generated, and the quotient and
remainder are undefined. Nonintegral quotients
are truncated to integers. The content of AF, CF,
OF, PF, SF and ZF is undefined following execu-
tion of DIV.

101V source

DIV {Integer Divide) performs a signed division
of the accumulator (and its extension) by the
source operand. I the source operand is a byte, it
is divided into the double-length dividend
assumed to be in registers AL and AH; the single-
length quetient is returned in AL, and the single-
length remainder is returned in AH. For byte in-
teger division, the maximum posilive gquotient is
+127 (7FH} and the minimum negative quotient is
=127 (81H). 1i the source operand is a word, it is
divided inte the double-length dividend in
registers AX and DX the single-length quotient is
returned in AX, and the single-length remainder
is returned in DX. For word integer division, the
maximum positive quotient is +32,767 (YFFFH)
and the minimum negative quotient is —32,767
(BOOTHY. If the quotient is positive and exceeds
the maximum, or is negative and is less than the
mininum, the quotient and remainder are
undefined, and a type 0 interrupt is generated. In
particular, this occurs if divisien by 0 is
attempled. Nonintegral quotieats are truncated
(toward 0} to integers, and the remainder has the
same sign as the dividend. The content of AF,
CF, OF, PF, SF and ZF is undefined following
IDIV.

AAD

AAD {ASCII Adjust for Division) modifies the
numerator in AL before dividing two valid
unpacked decimal operands so that the quotient
produced by the division will be a valid unpacked
decimal number. AH must be zero for the subse-

2-37

Mnamanics < Intel, 1978




8086 AND 8088 CENTRAL PROCESSING UNITS

quent DIV to produce the correct result. The quo-
tient is returned in AL, and the remainder is
returned in AH; both high-order half-bytes are
zeroed. AAD updates PF, SF and ZF; the content
of AF, CF and OF is undefined following execu-
tion of AAD,

cBw

CBW (Convert Byte to Word) extends the sign of
the byte in register AL throughout register AH.
CBW does not affect any flags. CBW can be used
to produce a double-length (werd) dividend from
a byte prior to performing byte division.

cwD

CWD (Convert Word (¢ Doubleword) excends the
sign of the word in register AX throughout
register DX, CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to per-
forming word division.

Bit Manipulation Instructions

The 8086 and 8088 provide three groups of
instructions (table 2-11) for manipulating bits
within both byres and words: logical, shifts and
rotares.

Table 2-11. Bit Manipulation Instructions
LOGICALS
NOT “Not’’ byte or word
AND “And” hyte or word
OR "Inclusive or”’ byte or word
X0OR ""Exclusive or" byte or word
TEST “Test” byte or word
SHIFTS
SHL/SAL | Shifttogicalfarithmetic left
byte or word
SHR Shiftlogical right byte or word
SAR Shiftarithmetic right byte or
word
ROTATES
ROL Rotate left byte or word
RCR Rotate right byte or word
RCL Rotate through carry left byte
of word
RGCR Rotate through carry right byte
or word

Logical

The logical instructions include the boolean
operators “‘not,” "*and,” “inclusive or,”’ and
“exclusive or,”” plus a TEST instruction that sets
the flags, but does not alter either of its operands.

AND, OR, XOR and TEST affect the flags as
follows: The overflow (OF) and carry (CF) flags
are always cleared by logical instructions, and the
content of the auxiliary carry (AF) flag is always
undefined following execution of a logical
instruction. The sign (SF), zero {ZF) and parity
(PF) lags are always posted to reflect the result of
the operation and <an be tested by conditional
jump instructions. The interpretation of these
lags is the same as for arithmetic instructions. SF
is set if the result is negative (high-order bit is 1),
and is cleared if the result is positive (high-order
bit is 0). ZF is set if the resultl is zero, cleared
otherwise. PF is set if the result contains an even
number of 1-bits {has even parity} and is cleared if
the number of 1-bits is odd (the result has odd
parity). Note that NOT has no effect on the flags.

NOT dastination

NOT inverts the bits (forms the one’s comple-
ment) of the byte or word operand.

AND destination, source

AND perferms the logical ““and*’ of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
both corresponding bits of the original operands
are set; otherwise the bit is cleared.

OR destination, source

OR performs the logical **inclusive or’* of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
either or both corresponding bits in the original
operands are set; otherwise the result bit is
cleared.

XOR destination, source

XOR (Exclusive Or) performs the logical **exclu-
sive or’’ of the two operands and returns the
result to the destinaiion operand. A bit in the
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result is set if the corresponding bits of the
original operands contain opposite values (one is
s¢t, the other is cleared); otherwise the result bit is
cleared.

TEST destination,source

TEST performs the logical ““and™ of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand is
changed. If a TEST instruction is followed by a
JNZ (jump if not zero) instruction, the jump will
be taken if there are any corresponding 1-bits in
both operands.

Shifts

The bits in bytes and words may be shifted
arithmetically or logically. Up to 255 shifts may
be performed, according to the value of the count
operand coded in the instruction. The count may
be specified as the constant 1, or as register CL,
allowing the shift count to be a variable supplied
at execution time. Arithmetic shifts may be used
to multiply and divide binary numbers by powers
of two (see note in description of SAR). Logical
shifts can be used to isolate bits in bytes or words.

Shift instructions affect the flags as follows. AF is
always undefined following a shift operation. PF,
SF and ZF are updated normally, as in the logical
instructions. CF always contains the value of the
last bit shifted out of the destination operand.
The content of OF is always undefined following
a multibit shift. In a single-bit shifi, OF is set if
the value of the high-order (sign) bit was changed
by the operation; if the sign bit retains its original
value, OF is cleared.

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift
Arithmeti¢ Left} perform the same operation and
are physically the same instruction. The destina-
tion byte or word is shifted left by the number of
bits specified in the ¢ount operand. Zeros are
shifted in on the right. If the sign bit retains its
original value, then OF is cleared.

SHR destination, source

SHR {Shift Logical Right) shifts the bits in the
destination operand (byte or word) to the right by

the number of bits specified in the count operand.
Zeros are shifted in on the left. If the sign bit
retains its eriginal value, then OF is cleared.

SAR destination,couni

SAR (Shift Arithmetic Right) shifts the hits in the
destination operand (byte or word) to the right by
the number of bits specified in the count operand.
Bits equal 10 the original high-order (sign) bit are
shifted in on the left, preserving the sign of the
original value. Note that SAR does not produce
the same result as the dividend of an
*equivalent” IDIV instruction if the destinatien
operand is negative and 1-bits are shifted out. For
example, shifting —5 right by one bit vields -3,
while integer division of —5 by 2 yields —2. The
difference in the instructions is that IDIV trun-
cates all numbers toward zero, while SAR trun-
cates positive numbers toward zero and negative
numbers toward negative infinity.

Rotates

Bits in bytes and words also may be rotated. Bits
rotated out of an operand are not lost as in a
shift, but are “‘circled’’ back into the other *‘end”’
of the operand. As in the shift instructions, the
number of bits to be rotated is taken from the
count operand, which may specify either a con-
stant of 1, or the CL regisier. The carry flag may
act as an extension of the operand in two of the
rotate instructions, allowing a bit to be isolated in
CF and then tested by a JC (jump if carry) or JNC
(jump if not carry) instruction.

Rotates affect only the carry and overflow flags.
CF always contains the value of the last bit
rotated out. On muliibit rotates, the value of OF
15 always undefined. In single-bit rotates, OF is
sel if the operation changes the high-order (sign)
bit of the destination operand. If the sign bit
retains its original value, OF is cleared.

ROL destination,count

ROL (Rotate Left) rotates the destination byie or
word left by the number of bits specified in the
count operand.
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RQOR desiination, count

ROR (Kotate Right) operates similar to ROL
exvepl that the bits in the destination byte or word
are rolated right instcad of left.

RCL destination.count

RCL (Rotate through Carry Lefi) rotates the bitg
in the byte or word destination operand to the left
by the number of biis specified in the count
operand. The catry flag (CF) is treated as “*part
of** the destination operand; that is, ils value is
rotated into the low-order bit of the destination,
and iself is replaced by the high-order hit of the
destination.

RCR destination,count

RCR (Rotate through Carry Right} operates
exaclly like RCL except that the bits are rotated
right instead of left.

String Instructions

Five basic string operations, called primitives,
allow strings of bytes or words to he operated on,
enc element (byte or word) al a time. Strings of
up to 64k bytes may be manipulated with these
instructions. Instructions are available 1o move,
compare and scan for a value, as well as for mov-
ing string elements to and from the accumulator
(sce table 2-12). These basic operations may be
praceded by a speciai one-byte prelix thal causes
the instruction to be repeated by the hardware,
allowing long strings (o be processed much faster
than would be possible with & software loop. The
repetitions ¢an be terminated by a variety of con-
ditions, and a repeated operation may be inter-
rupted and resumed,

The string instructions operate quite similarfy in
many tespects; the common characteristics are
covered here and in table 2-13 and figurce 2-33
rather than in the descriptions of the individual
instructions. A string inslruction may have a
source operand, a destination operand, or both.
The hardware assumes that a source string resides
in the current data segment; a segment prefix byte
may be used to override this assumption. A
destination string must be in the current extra seg-
ment. The assembler checks the attributes of the

operands to determine if the elements of the
surings ave bytes or words. The assembler does
not, however, use the operand names to address
the strings. Rather, the content of register SI
(source index) is used as an offset 10 address the
current glement of the source siring, and the con-
tent of register DI (destination index) is taken as
the offset of the currem destinatien siring ele-
ment. These registers must be initialized to point
io the source/destination strings before executing
the string instruclion; the LDS, LES and LEA
instructions are useful in this regard.

Table 2-12. String Instructions

REP Repeat

REPE/REPZ Repeat while equal /zero

REPMNE/REFNZ Repeat while not
equal/not zero

MOVS Move byte or word string

MOVSB/MOVSW Move byte or word string

CMPS Compare byte orword
string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

Table 2-13. String Instruction Register and

Flag Use
| Index (offset) for source string
DI Index {offset) for dastination
string
CX Repetition counter

ALTAX Scan value
Destination for LODS
Source for STOS

DF 0 =autg-increment 81, DI
1 = auto-decrement SI, DI

ZF Scan/compars terminator
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The string instructions automatically update SI
and/or DI in anticipation of processing the next
string element. The setting of DF {(the direction
flag) determines whether the index registers are
auto-incremented (DF = 0} or auto-decremented
{DF = 1). If byte strings are being processed, SI
and/or DI is adjusted byl; the adjustment is 2 for
word sirings.

If a Repeat prefix has been coded, then register
CX {count register) is decremented by 1 after each
repetition of the string instruction; therefore, CX
must be initialized to the number of repetitions
desired before the string instruction is executed. If
CX is 0, the string instruction is not executed, and
control goes to the following instruction.

Section 2.10 contains examples that illustrate the
use of al} the string instructions.

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While Zero,
Repeat While Not Equal and Repeat While Not
Zero are five mnemonics for two forms of the
prefix byte that controls repetition of a subse-
quent string instruction. The different mnemonics
are provided 10 improve program clarity. The
repeat prefixes do not affect the flags.

REP is used in conjunction with the MOYS
{Move String) and STOS (Store String) instruc-
tions and is interpreted as “‘repeat while not end-
of-string'* (CX not 0). REPE and REPZ operate
idenrically and are physically the same prefix byte
as REP. These instructions are used with the
CMPS (Compare String} and SCAS (Scan String)
instructions and require ZF {posted by these
instructions) to be set before initiating the next
repetition. REPNE and REPMNZ are two
mnemocnics for the same prefix byte. These
instructions function the same as REPE and
REPZ except that the zero flag must be ¢leared or
the repetition is terminated. Note that ZF does
not need 1o be initialized before executing the
repeated string instruction,

Repeated siring sequences are interrupiable; the
processor will recognize the interrupt before pro-
cessing the next string element. System interrupt
processing is not affected in any way. Upon
return from the interrupt, the repeated operation
15 Tesumed from the point of interruption. Note,
however, that execuiion does not resume properly

if a second or third prefix (i.e., segment override
or LOCK) has been specified in addition to any of
the repeat prefixes. The processor “‘remembers™
only one prefix in effect at the time of the inter-
rupt, the prefix that immediately precedes the
string instruction. After returning from the inter-
rupt, processing resumes at this point, but any
additional prefixes specified are not in effect. if
more than one prefix must be used with a string
instruction, interrupts may be disabled for the
duration of the repeated execution. However, this
will not prevent a non-maskable interrupt from
being recognized. Also, the time that the system is
unable 10 respond o interrupts may be unaccepi-
able if long strings are being processed.

MOVS destination-string, source-siring

MOVS (Move String) transfers a byie or a word
from the source string {addressed by SI) to the
destination string (addressed by DI1) and updates
Sl and D3I to point to the next siring element.
When used in conjunction with REP, MOVS per-
forms a memory-to-memory block transfer.

MOVSB/MOVSW

These are alternate mnemonics for the move
string instruction. These mnemonics are coded
without operands; they explicitly tell the
assembler that a byte string (MOVSB) or a word
string (MOVSW) is to be moved (when MOVS is
coded, the assembler determines the string type
from the attributes of the operands). These
mnemonics are useful when the assernbler cannot
determine the atiributes of a siring, <.g., a section
of code is being moved.

CMPS destination-string, source-string

CMPS (Compare String) subtracts the destination
byte or word {addressed by DI) from the source
byie or word {addressed by SI). CMPS affects the
flags but does not alter either operand, updates SI
and DI to point to the next string element and
updates AF, CF, OF, PF, SF and ZF to reflect the
relationship of the destination element to the
source element. For example, if a JG (Jump if
Greater) instruction follows CMPS, the jump is
taken if the destination element is greater than the
source element. If CMPS is prefixed with REPE
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or REPZ, the operation is interpreted as *‘com-
pare while not end-of-siring (CX not zero) and
strings are equal (ZF = 1)."" If CMPS is preceded
by REPNE or REPNZ, the operation is inter-
preted as “‘compare while not end-of -string (CX
not zero) and strings are not equal (ZF = 0).”
Thus, CMPS can be used io find matching or dif-
fering string elements.

SCAS destination-string

SCAS (Scan String) subtracts the desiination
string element (byte or word) addressed by DIl
from the content of AL (byte string) or AX {word
string) and updates the flags, but does not alter
the destination string or the accumulator. SCAS
also updates DI to point to the next string element
and AF, CF, OF, PF, SF and ZF to reflect the
relationship of the scan value in AL/AX to the
string element. [f SCAS is prefixed with REPE or
REPZ, the operation is interpreted as *‘scan while
not end-of-string {CX not 0) and string-element =
scan-value (ZF = 1).”’ This form may be used to
scan for departure from a given value, If SCAS is
prefixed with REPNE or REPNZ, the operation
is mterpreted as ‘*‘scan while not end-of-string
(CX not ) and string-element is not equal to
scan-value (ZF = 0).”” This form may be used to
locate a value in a string.

LODS scurce-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL or
AX, and updates Sl to peint to the next element
in the string. This instructon is not ordinanily
repeated since the accumulator would be over-
written by each repetition, and only the last ele-
ment would be retained. However, LODS is very
useful in software loops as part of a more com-
plex string function built up from  string
primitives and other instructions.

S8TOS destination-stiing

STOS (Store String) transfers a byte or word from
register AL or AX to the string element addressed
by DI and updates DI 1o point to the next location
in the string. As a repeated operation, STOS pro-
vides a convenient way to initialize a string 0 a
constant value (e.g., to blank cut a print line).

Program Transfer Instructions

The sequence of execution of instructions in an
%086/ 8088 program is determined by the content
of the code segment register (CS) and the instruc-
tion pointer (IP). The CS register contains the
base address of the current code segment, the 64k
portion of memory from which instructions are
presently being fetched. The 1P is used as an off-
set from the beginning of the ¢ode segment; the
combination of CS and IP points to the memory
location from which the next instruction is to be
fetched. {Recall that under most operating condi-
tions, the next instruction to be execwied has
already been fetched from memory and is waiting
in the CPU instruction queue,) The program
transfer instructions operate on the instruction
pointer and on the CS register; changing the con-
tent of these causes normal sequential execution
to be altered. When a program transfer occurs,
the gueue no longer contains the correct instruce
lion, and the BIU obtains the next iastruction
from memory using the new IP and CS§ values,
passes the instruction directly 1o the EU, and then
begins refilling the queue from the new location.

Four groups of program transfers are available in
the 8086/8088 (see table 2-14). unconditional
transfers, conditional transfers, iteration control
instructions and interrupt-related instructions.
Only the interrupt-related instructions affect any
CPU flags. As will be seen, however, the execu-
tion of many of the program transfer instructions
is affected by the states of the flags,

Unconditional Transfers

The unconditional transfer instructions may
transfer control to a target instruction within the
current code segment {intrasegment transfer) or
to a different code segment {intersegment
transfery. (The ASM-86 assembler terms an
intrasegment target NEAR and an intersegment
target FAR.) The transfer is made uncondition-
ally any time the instruction is executed.

CALL procedure-name

CALL activates an out-of-line procedure, saving
information on the stack to permit a RET (return}
instruction in the procedure to transfer control
back to the instruction following the CALL. The
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Tabte 2-14. Program Transfer Instructions

UNCONDITIONAL TRANSFERS
CALL Cali procedure
RET Return from procedure
JMP Jump
CONDITIONAL TRANSFERS
JAFJNBE Jump if above/not below
nor equal
JAEJJNB Jump if above or
egual/notl below
JBIJNAE Jumnp if below/not above
nor equal
JBE/INA Jump if below or
equalfnot above
JC Jump if carry
JEHZ Jump if equalizera
JGHINLE Jump if greaterinot less
nor equal
JGEFJNL Jump if greater or
equalfnotless
JLIJNGE Jump if less/not greater
nor equal
JLEJING Jump if less or eguali not
greater
JNC Jump if net carry
JNE/INZ Jump if not equal fnot
zero
JMNO Jump if not overflow
JNBIIPO Jurmnp it not parity fparity
odd
JNS Jump if not sign
JO Jdump if overflow
JPIJPE Jump it parity f parity
even
Js Jump if sign
ITERATION CONTROLS
LOOP Loop
LOOPE/LOOPZ Loop if equalfzero
LOOPNE/LOOPNZ | Loop if not equal/not
zero
JOXZ Jump if registerCX =0
INTERRUPTS
INT Interrupt
INTG Interrupt if averflow
IRET Interrupt return

assembler gencrates a different (ype of CALL
instruction depending on whether the program-
maer has defined the procedure name as NEAR or
FAR. For control to return properly, the type of
CALL instruction must match the type of RET
instruction that exits from the procedure. (The
potential for a mismatch exists if the procedure
and the CALL are contained in separately
assembled programs.) Different forms of the
CALL instruction allow the address of the target
procedure to be obtained from the instruction
itself (direct CALL) or from a memory location
or register refer¢nced by the instructien (indirect
CALL). In the following descriptions, bear in
mind that the processor automatically adjusts 1P
to point to the next instruction to be execured
before saving it on the stack.

For an intrasegment direct CALL, SP (the stack
pointer) is decremented by two and IP is pushed
orle the stack. The relative displacement (up to
+32k) of the target procedure from the CALL
instruction is then added (o the instruction
poinler. This form of the CALL instruction is
“‘self-retative’” and is appropriate for pesition- in-
dependent (dynamicatly relocatable) routines in
which the CALL and its target are in the same
segment and are moved together,

An intrasegment indirect CALL may be made
through memory or through a rcgister. SP is
decremented by two and IP is pushed onto the
stack. The offset of the target procedure is
obtained from the memory word or 16-bit general
register referenced in the instruction and replaces
[P,

For an intersegment direct CALL, SP s
decremented by two, and CS is pushed onto the
stack. CS is replaced by the segment word con-
tained in the instruction. SP again is decremented
by two. IP is pushed onte the stack and is
replaced by the offset word contained in the
instruction.

For an intersegment indirect CALL {which only
may be made through memory), SP is
decremented by two, and CS is pushed onto the
stack. CS is then replaced by the content of the
sccond word of the doubleword memory pointer
referenced by the instruction. SP again is
decremented by two, and IP is pushed onto the
stack and is replaced by the content of the first
word of the doubleword pointer referenced by the
mstruction.
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RET optional-pop-vaiue

RET (Return) transfers control from a procedure
back to the instruction following the CALL that
activated the procedure. The assembler generates
an intrasegment RET if the programmer has
defined the procedure NEAR, or an intersegment
RET if the procedure has been defined as FAR.
RET pops the word at the top of the stack
(pointed to by register SP) into the instruction
pointer and increments SP by two. If RET is
intgrsegment, the word at the new top of stack is
popped into the CS register, and SP is again
incremented by two. If an optional pop value has
been specified, RET adds that value to SP. This
feature may be used to discard parameters pushed
onto the stack before the execution of the CALL
instruction.

JMP farget

JMP unconditionally transfers control to the
targel location. Unlike a CALL instruction, JMP
does nol save any information on the stack, and
no return to the instruction following the JMP is
expected. Like CALL., the address of the target
operand may be obtained from the instructicn
itself {direct JMP) or from memory or a register
referenced by the instruction {(indirect IMP).

An intrasegment direct JMP changes the instruc-
tion pointer by adding the relative displacement
of the target from the JMP instruction. 1f the
assembler can determine that the target is within
127 bytes of the JIMP, it automatically generates a
two-byte form of this instruction called a SHORT
IMP; otherwise, it generates a NEAR IMP that
can address a target within x£32K. Intrasegment
direct IMPS are self-relative and ar¢ appropriate
in position-independent {dynamically relocatable)
routines in which the IMP and its target are in the
same segment and are moved together.

An intrasegment indirect JMP may be made
either through memory or through a 16-bit
general register. In the first case, the content of
the word referenced by the instruction replaces
the instruction pointer. In the second case, the
new IP value is taken from the register named in
the instruction.

An intersegment direct JMP replaces {P and CS
with values contained in the instruction.

An intersegment indirect JMP may be made only
through memory. The first word of the
doubleword peinter referenced by the instruction
replaces IP, and the second word replaces CS.

Conditional Transfers

The conditional transfer instructions are jumps
that may or may not transfer control depending
on the state of the CPU flags at the time the
instruction is executed. These 18 instructions {see
table 2-15) each test a different combination of
flags for a ¢ondition. If the ¢ondition is “trug,”
then control is transferred to the target specified
in the instruction. If the condition is “‘false,””
then control passes to the instruction that follows
the conditional jump. All conditional jumps are
SHORT, thal is, the largel musl be in the current
code segment and within —128 to +127 bytes of
the first byte of the next instruction {(JMP 00H
jumps 10 the first byte of the next instructionm).
Since the jump is made by adding the relative
displacement of the target to the instruction
pointer, all conditional jumps are self-relative and
are appropriate for position-independent
routines.

Iteration Control

The iteration control instructions can be used to
regulate the repetition of software loops. These
instructions use the CX register as a counter. Like
the conditional transfers, the iteration control
instructions arc seif-relative and may only
transfer to targets that are within —128 to +127
bytes of (hemselves, i.e., they are SHORT
transfers.

LOOP short-label

LOOQP decrements CX by 1 and transfers control
to the target operand if CX is not 0; otherwise the
instruection following LOOP is executed.
LOQPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and

Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and

2-45
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Table 2-15. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMPIF "'

JATINBE {CF OR ZFy=0 above/not below nor equal
JAE!/JNB CF=p above or equal/ not hefow
JB/JINAE CF=1 below/not above nor equal
JBE/JNA {CFon ZF)=1 below or egualf not above
JC CF=1 carry

JEIJZ ZF=1 equalf/zero

JG/JNLE {{SF xor OF) on ZF)=0 greater/notless nor equal
JGE/JNL {SF xor OF)=0 greater or equat/not less
JLIJNGE {SF xon OF)=1 less/not greater nor equal
JLE/JNG {{SF xor OF) on ZF)=1 less or equal fnot greater
JNC CF=0 not carry

JNE/JNZ ZF=(} not equalinot zero

JNO OF=0 not overflow

JNPIJPO PF={ not parity/ parity odd

JNS SF=0 not sign

JO OF=1 overflow

JPIJPE PF=1 parity/parity equal

J8 SF=1 sign

Note:

“above'’ and “below'’ refer to the relationship of two unsigned values:

“‘greater’” and “‘lass’’ refer to the relationship of two signed values,

REPZ repeat prefixes). CX is decremented by 1,
and control is transferred to the target operand if
CX is not D and if ZF is set; otherwise the instruc-
tion following LOOPE/LQOPZ is executed.

LOOPNE/LOOPNZ short-fabel

LOOPNE and LOOPNZ (Loop While Not Equal
and Loop While Not Zero) are also synonyms for
the same instruction, CX is decremented by 1,
and control is (ransferred to the target operand if
CX is not 0 and if ZF is clear; otherwise the next
sequential instruction is executed.

JCXZ short-iabef

JCXZ (Jump If CX Zero) transfers control to the
target operand if CX is 0. This instruction is
useful at the beginning of a loop 10 bypass the
loop if CX has a zero value, i.e., to execute the
loop zero times.

Interrupt Instructions

The interrupt instructions allow interrupt service
routines to be activated by programs as well as by

external hardware devices, The effect of software
interrupts is similar to hardware-initiated inter
rupts. However, the processor does not execute
an interrupt acknowledge bus cycle if the inter-
rupt originates in software or with an NMI. The
effect of the interrupt instructions on the flags is
covered in the description of each instruction,

INT inferrupt-type

INT (Interrupt) activates the interrupt procedure
specified by the interrupt-type operand. INT
decrements the stack pointer by two, pushes the
flags onto the stack, and clears the trap (TF) and
interrupt-enable (IF) flags 1o disable single-step
and maskable interrupts. The flags are stored in
the format used by the PUSHF instruction. SP is
decremented again by two, and the CS register is
pushed onto the stack. The address of the inter-
rupt peinter is calculated by multiplying
interrupt-type by four; the second word of the in-
terrupt  pointer replaces CS. SP  again s
decremented by two, and IP is pushed onte the
stack and is replaced by the first word of the inter-
rupt pointer. If interrupt-type = 3, the assembler

. enerates a short {1 byte) form of the instruction,

known as the breakpoint interrupt.

Mnemonics € Intel, 1678
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Software interrupts can be used as ‘‘supervisor
calls,” i.e., requests for service from an operating
system. A different interrupt-type can be used for
cach type of service that the operating system
could supply for an application program. Soft-
ware interrupts also may be used to check out
interrupt service procedures written for hardware-
initiated interrupts.

INTO

INTO {nterrupt on Overflow) generates a soft-
ware interrupl if the overflow flag (OF) is set;
otherwise control proceeds to the following
instruction without activating an interrupt pro-
cedure. INTO addresses the target inderrupt pro-
cedure (its type is 4} through the interrupt pointer
at lecation 10H; it <lears the TF and IF flags and
otherwise operates like INT, INTO may be writ-
ten following an arithmetic or logical operation to
activate an intercupt procedure if overflow
OCCUrs.

iRET

IRET (Interrupt Return) transfers control back to
the point of interruption by popping IP, CS and
the flags from the stack. IRET thus affects all
flags by restoring them to previously saved
values. [RET is used (o exil any interrupt
procedure, whether activated by hardware or
software,

Processor Control Instructions

These instructions (see table 2-16) allow programs
1o control various CPU functions. One group of
insiructions updates flags, and another group is
used primarily {or synchronizing the 8086 or 8083
with external events. A final instruction causes
the CI'U te do nothing. Except for the flag opera-
tions, none of the processor control instructions
affect the flags.

Flag Operations

CLC

CLC (Clear Carry flag) zeroes the carry flag (CF)
and affects no other flags. It (and CMC and STC)
is useful in conjunction with the RCL and RCR
instructions.

Table 2-16. Processor Control Instructions

FLAG OPERATIONS
5TC Setcarry flag
CLC Clear ¢arry flag
CMG Complement carry flag
s8TD Set direction flag
CLD Clear direction Hlag
STI Selinterrupl enable fag
cL! Clear interrupt enable flag

EXTERNAL SYNCHROMIZATION

HLT Hait uwntil interrupt or reset

WAIT Wait for TEST pin active

ESC Escape to external processor

LOCK Lock bus during next
instruction

NO OPERATION

NOP No opetration

CcCMC

CMC (Complement Carry flag) “toggles” CF o
its opposite s1ate and affects no other flags.

STC

STC (Set Carty flag) sets CF to 1 and affects no
other flags.

CLD

CLD {Clear Direction flag) zeroes DF causing the
string instructions to auto-increment the SI
and/or DI index registers. CL.1D does not affect
any other flags.

STD

STD (Sct Direction flag) sets DF to 1 causing the
string instructions to auto-decrement the SI
and/or D] index registers. STD does not affect
any other flags.
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CLI

CLI (Clear Interrupt-enable (lag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external inter-
rupt request that appears on the INTR line: in
other words maskable interrupts are disabled. A
non-maskable interrupt appearing on the NMI
line, however, is honored, as is a software inter-
rupt. CLI does not affect any other flags.

§TI

STI (Set Interrupt-cnable flag} sets IF to 1, en-
abling processor recognition of maskable inter-
rupt requests appeariog on the INTR line. Note
however, that a pending interrupt will not actu-
ally be recognized until the instruction following
STI has executed. STI does not affect any other
flags,

External Synchronization

HLT

HLT (Halt) causes the 8086/8088 to enter the hall
state. The processor leaves the halt state upon
activation of the RESET line, upon receipt of a
non-maskable interrupt request on NMI1, or, if
interrupts are enabled, upon receipt of a
maskable interrupt request on INTR. HLT does
not affect any flags. It may be used as an alter-
native to an endiess software loop in situations
where a program must wait for an interrupt.

WAIT

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does not
affect any flags. This instruction is described
more completely in section 2.5.

ESC external-opcode, source

ESC (Escape) provides a means for an external
processor to obtain an opcode and possibly a
memory operand from the 8086 or 8088, The
external opcode is a 6-bit immediate constant that
the assembler encodes in the machine instruction

it builds (see table 2-26). An external processor
may monitor the system bus and capture this
opcode when the ESC is fetched. If the source
operand is a register, the processor does nothing.
If the source operand is a memory variable, the
processor obtains the operand from memory and
discards it. An external processor may capiure the
memory operand when the processor reads it
from memory.

LOCK

LOCK s a one-byte prefix that causes the
8086/8088 (configured in maximum mode) to
assert its bus LOCK signal while the following
instruction executes, LOCK does not affect any
flags. See section 2.5 For more information on
LOCK.

No Operation

NOP

NOP (No Operation) causes the CPU to do
nothing. NOP does not affect any flags.

Instruction Set Reference Information

Table 2-21 provides detailed operational informa-
tion for the BOB6/8088 instruction set. The
information is presented from the point of view
of utility to the assembly language programmer.
Tables 2-17, 2-18 and 2-19 explain the symbols
used in table 2-21. Machine language instruction
encoding and decoding information is given in
Chapter 4.

[nstruction timings are presented as the number
of ¢clock periods required to execute a particular
form (register-to-register, immediate-to-memory,
etc.) of the instruction. If a system is running with
a2 5 MHz maximum clock, the maximum clock
period is 200 ns; at 8 MHz, the clock period is 125
ns. Where memory operands are used, “+EA™
denotes a variable number of additional clock
periods needed to calculate the operand’s effec-
tive address (discussed in section 2.8). Table 2-20
lists all effective address calculation times.

Mriemeonics  Intel, 1978
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-17. Key to Instruction Coding Formats

IDENTIFIER USED IN EXPLANATION
destination data transter, A register or memory location that may contain data
bit manipulation operated on by the instruction, and which receives (is
replaced by) the result of the operation.
source data transfer, A register, memory location or immediate value that is

source-table

target

short-label

accumulator

port

source-siring

dest-string

count

interrupt-type

oplional-pop-value

external-opcode

arithmetic,

bit manipulation

XLAT

JMP, CALL

cond. transfer,

iteration control

iN, OUT

N, OUT

string ops.

string ops.

shifts, rotates

INT

RET

ESC

used in the operation, but is not altered by tha instruc-
tion.

Name of memory translation table addressed by register
BX.

A label to which control is to be transterred directly, or a
register or memory location whose conignt is the
address of the location to which control is to be transter-
red indirectly.

A label to which centrol is to be conditionally
transferred; must lie within ~128 10 +127 bytes of the first
byte of the nextinstruction.

Register AX for word transfers, AL for bytes.

An 11O port number; specified as an immediate value of
0-255, or register DX (which centains port number in
range 0-64k}.

Name of a string in memcry that is addressed by register
5k used only to idenlify string as byte or word and
specify segment override, if any. This string is used in
the oparation, but is not altered.

Name of string in memaory that is addressed by register
Di; used only to identify string as byte or word. This
string receives {is replaced by) the result of the opera-
tion.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL {which contains the
count in the range 0-255).

Immediate value of 0-255 identifying interrupt pointer
numbaer.

Number of bytes (0-64k, erdinarily an even number} to
discard from stack.

Immediate value (0-83) that is encoded in the instruction
for use by an external processor.
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Table 2-18. Key to Flag Effects

Table 2-19, Key to Operand Types

For control transfer instructions, the timings
given include any additional clocks required o
reinitialize the instruction queue as well as the
time required to fetch the target instruction. For
instructions executing on an 8086, four clocks
should be added for cach instruction reference to
a word operand located ar an odd memory
address 10 reflect any addilional operand bus
cycles required. Similarly for instructions exe-
cuting on an 8088, four clocks should be added to
each instruction reference to a 16-bit memory
operand; this includes all stack operations. The
required number of data references is listed in
table 2-21 for each instruction to aid in this
calculation.

Several additional factors can increase actnal
execution time over the figures shown in table
2-21. The time provided assumes that the instruc-
tion has already been prefetched and that it is
wailing in the instruction gueue, an assumption
that is valid under most, but not all, operating
conditions. A series of fast executing (fewer than
two clocks per opcode byte) instructions can drain
ithe queve and increase execution time, Execution
time also is slightly impacted by the interaction of
the EU and BIU when memory operands must be
read or written. If the EU needs access to
memaory, it may have to wait for up to one clock if
the BIU has aiready started an instruction feich
bus cycle. (The EU can dctect the need for a
memory operand and post a bus request far
enough in advance of its need for this operand to
avoid waiting a full 4-clock bus cyele). Of course
the EU does not have to wait if the queue is full,
because the BIU is idle. (This discussion assumes

source-table
source-string
dest-string
DX
short-label
near-label
far-label
near-proc
tar-proc

memptri6

memptrs2

regptrié

repeat

1DENTIFIER EXPLANATION IDENTIFIER EXPLANATION
{blank} not altered {no opearands) | No operands are written
0 cleared to 0 register An 8- or 16-bit general register
] setio ] req 16 A 16-bit genera.l registar
seg-reg A segment register
X set or cleared according accumulator | Register AX or AL
to result A 9 ©
i diat tant i the ran
U undefined—contains no mmedtate g_|:|:c|:?:r|‘.|3 ant a¢
reliable value immeda A constant in therange 0-FFH
R restored from previously- memory An 8- or 18-bit memory
saved value location!®
mem8 An 8-bit memory locationt™
mem16 A 16-bit memory tocation'!

Name of 2536-byte translate

table

Mame of string addressed by
register SI

Name of string addressed by
regisier DI

Register DX

A Jabel within —128 to +127
bytes of the end of the instruc-
tion

A dabel in current code
segment
A label in another code
segment

A procedure in current coede
segment

A procedure in another code
segment

A word containing the offset of
the location in the current code
segment to which control is to
be transferred!”

A doublewerd containing the
offset and the segment base
address of the Ilocation in
another ¢code segment to which
control s to be transferred

A 168-bit general register
containing the offset of the
location in the current code
segment to which control is to
be transferred

A string instruction
prafix

repeat

"any addressing mode—direct, register in-
direct, based, Indexed, or based
indexed~~may be used (see section 2.8).
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-20. Effective Address Calculation that the BIU ¢an obtain the bus en demand, i.e.,
Time that no other processors are competing for the
bus.)
EA COMPONENTS CLOCKS"
Displacement Only 6 With typical instruction mixes, the time actually
Base or Index Only  (BX,BP,S1,Dl) 5 required to execute a sequence of instructions will
Displacement typically be within 35-10% of the sum of the
+ 9 individual timings given in table 2-21. Cases can
Base orIndex (BX,BP,S1,D1) be constructed, however, in which execution time
Ba:e BP + DI, BX +8I 7 may be much higher than the sum of the figures
provided in the table. The execuiion time for a
:;igzracamem gg : [S):,+B[))<I;IEI 8 given sequence of inslructions, however, is alwas{s
N BX + S+ DISP 1" rppealgble, assurning comparab]? ;xterna] condi-
Base tions (interrupts, copracessor activity, etc.). If the
+ BP 5|+ DISP execution time for a given series of instructions
Index BX + DI+DISP 12 must be determined exactly, the instructions
should be run on an execution vehicle such as the
* Add 2 clocks for segment override SDK-86 or the iSBC 86/12™ board.

Table 2-21, [nstruction Se1 Reference Data

AAA (nooperands) ODITSZAPC
AAA ASCIl adjust for addition Flags UU X U X
Operands Clocks | Transfers* | Bytes Coding Example
{no cperands) 4 —_ 1 AAA
AAD {nc operands) CDITSZAPC
AAD ASCH adjust for division Flags | XX UXU
Operands Clocks | Transfers® | Bytes Coding Example
(no operands) 60 — 2 AAD
AAM (no operands) ODITSZAPC
AAM ASCIt adjust for multiply Flags ) XXUXU
Operands Clocks | Transfers* | Bytes Coding Example
{no operands) 83 - 1 AAM
AAS {no operands) CDIETSZAFRPC
AAS ASCI adjust for subtraction Flags V) U Xuyux
Operands Clocks | Transfers* | Bytes Coding Example
{no operands) 4 — 1 AAD

*For the 8086, add [our eincks for aach 16-bil word transter with an odd address. For the B0BB, add four clocks lor each 16-bit word tranglar.

I 2-5i
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data {Conti'd.)

ADC destinalion,sgurge OCDITSZAPG
ADC Add with carry Flags X X X X X
Operands Clocks | Transfers® | Bytes Coding Example
register, ragister 3 — 2 ADC AX, 8l
register, memory 9+ EA 1 2-4 ADC DX, BETA [SH
memory, register 16+ EA 2 2-4 ADGC ALPHA [BX][SI], DI
register, immediate 4 — 3-4 ADC BX, 256
memory, immeadiate 17+EA 2 36 ADC GAMMA, 30H
accumulator, immediate 4 — 23 ADGC AL,S5
ADD destinalion,source CODITSZAPG
ADD Addition Flags X X X XX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 ADD CX,DX
register, memaory 9+EA 1 2-4 ADD DI, |BX|.ALPHA
memory, register 16+ EA 2 2-4 ADD TEMP,CL
register, immediate 4 - 34 ADD CL,2
memory, immediaie 17 +EA 2 36 ADD ALFHA, 2
accumulator, immediate 4 — 2-3 ADD AX, 200
AND destination, source ODITSZAPCG
AND Logical and Flags 0 XX UX O
Qperands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 AND AL,BL
register, memory 9+EA 1 2.4 AND CX,FLAG_WORD
memory, register 16+ EA 2 2-4 AND ASGII [DI}.AL
register, immediate 4 - 34 AND CX,0F0H
memory, immediate 17 +EA 2 36 AND BETA,D1H
accumuylator, immediate 4 - 23 AND AX, (10100008
CALL target ODITSZAPC
CALL Call a procedure Flags
Operands Clocks | Transfers* | Bytes Coding Examples
near-proc 19 1 3 CALL NEAR_PROC
far-proc 28 2 5 CALL FAR. _FROC
memptr 16 21 +EA 2 2-4 CALL PROC_TABLE [S]]
regptr16 16 1 2 CALL AX
memptr 32 T+ EA 4 2.4 CALL [BX].TASK [SI]
CBW (no operands) CDITSZAPC
Cew Convert byte to word Flags
Operands Clocks | Transfers* | Bytes Coding Example
{no operands} 2 — 1 cBw

*For tha 8088, add tour clocks tor each 16-bit word transier with an odd address. For the 8088, add four clocks for @ach 18-bit word transier.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

CLC {no cperands) OQDITSZAPCGC
cLC Clear carry flag Flags 0
Operands Clocks | Transfers* | Byles Coding Example
{no operands) 2 - 1 CLC
CLD (no operands) ODITSZAPC
CLD Clear direction flag Flags 0
Operands Clocks | Transters* | Bytes Coding Example
{no operands)} 2 - 1 CLD
CLI (no operands) ODITSZAPC
CLi Clear interrupt flag Flags 4
Operands Clocks | Transfers® | Bytes Coding Example
{no operands) 2 — bl cLl
CMC {no operands) ODITSZAPC
CMC Complement carry flag Flags X
Cperands Clocks | Transfors* | Bytes Coding Example
{no operands} 2 —_ 1 CMC
CMP destination, source ODITSZAPC
CMP Compare destination to source Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
regisier, reqgister 3 — p GMP BX,CX
regisier, memory 8+EA 1 2-4 CMP DH, ALPHA
memaory, ragister 94 EA 1 2-4 CMP |BP +2], 8l
register, immediate 4 - 34 CMP BL, 02H
memaory, immediate 10+ EA 1 3-8 CMP [BX].RADAR [DI], 3420H
accumulator, immediate 4 — 2-3 CMF AL, DOD10000B
CMPS dest-string,source-string ODITSZAPC
CMPS Compare string Flags X XX XXX
Operands Clocks | Transters* | Bytes Coding Example
dest-siring, source-string 22 2 1 CMPS BUFF1, BUFF2
(repeat} dest-string, source-string 9+22/rep 2irep 1 REPE CMPS 1D, KEY

“For the 8088, add four Slucks for each 16-bit ward transfer with an odd address. For the 8088, add four clocks for each 16-bit word lranster,
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

CWD {no operands)

ODITSZAPC

CWD Converl word to doubleword Flags
Operands Clocks | Transfers* | Bytes Coding Example
{no operands) 5 — 1 cCwWD
DAA (no operands) ODITSZAPC
DAA Decimal adjust for addition Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
{no operands) 4 — 1 DAA
DAS (no operands) ODITSZAPC
DAS Dacimal adjust for subtraction Flags |, XX XX X
Operands Clocks | Transfers* | Bytes Coding Example
{no oparands) 4 - 1 DAS
DEC destination ODITSZAPC
DEC Decrement by 1 Flags X XX XX
Operands Clocks | Transfers* | Bytes Coding Example
reglf 2 —_ 1 DEC AX
reg8 3 - 2 DEC AL
memory 15+EA 2 2-4 DEC ARRAY [SI]
DIV source ODITSZAPC
DIV Division, unsigned Flags |, Uuuuy
Operands Clocks | Transfers® | Bytes Coding Exampie
regs 80-9¢C - 2 DIV CL
reg1é 144162 — 2 DIY BX
mema {86-96) 1 24 DIV ALPHA
+EA
memi6 {150-168) 1 24 DIV TABLE [3I]
+EA
ESC ESC external-opcode,source Flags ODITSZAPC
Escape 9
Operands Clocks | Transfers* | Bytes Coding Example
immediate, memory 8+ EaA 1 2-4 ESC 6,ARRAY [SI)
immediate, register 2 - 2 ESC 20,AL

“For tive 8086, add four elacks for each 16-bit word transfer with an odd address. For the 8088, add four clacks Tor each 16-bit word transfer.

Mnemanlcs © Intal, 1978

2-54
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Table 2-21. Instruction Set Reference Data (Cont’d.)

HLT {no operands)

ODITSZAPC

HLT Ralt Flags
Qperands Clocks | Tramsfers® | Bytes Coding Example
{no operands) 2 —_ 1 HLT
IDIV source ODITSZAPG
IDIV Integer division Flags |, UUUU U
Operands Clocks | Transfers® | Bytes Coding Example
rags 101-112 — 2 1D BL
regib 185-184 - 2 DIV CX
mams {107-118) 1 2-4 DIV DIVISOR_BYTE [51]
+EA
memi6 {171-120) 1 2-4 1DV [BX].DIVISOR_WORD
+EA
IMUL scurce CDITSZAPG
IMUL Integer multiplication Flags VUUU X
Operands Clocks | Transfers® | Bytes Caoding Example
regs 50-98 — 2 IMUL CL
reqlb 128-154 — 2 IMUL BX
mema {66-104) 1 24 IMULL RATE__BYTE
+EA
mem16 {134-160) 1 24 IMUL RATE_WORD [BP] [DI]
+EA
IN accumulator,port ODITSZAPC
IN Input byte or word Flags
Operands Clocks | Transters® | Bytes Coding Example
accumulater, immeds 10 1 2 IN AL, OFFEAH
accumutater, DX 8 1 1 IN AX, DX
INC destination ODITSZAPC
INC fncrement by 1 Flags X X X X
Operands Clocks | Transfers® | Bytes Coding Example
reglb 2 - 1 ING CX
regh 3 - 2 INC BL
memory 15+ EA 2 24 INC ALPHA [DI| |BX]

*For the 808G, add four Clocks for aach 16-bit word transler wilh an odd address, For the 8088, add four clocks tor each 18-bit word iransfer,
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Table 2-21. Instruction Set Reference Data (Cont’d.)

INT interrupt-type ODITSZAPC
INT Interrupt Flags 20
Operands Clocks | Transfers* Bytes Coding Exampla
immeds (type = 3) 52 5 1 INT 3
immeds {type # 3) 51 5 2 INT &7
T INTR (externat maskable interrupt) ODITSZAPC
INTR Interrupt it INTR and |F—1 Flags 00
Operands Clocks | Transfers® Bytes Coding Example
{no operands) 61 7 N /& N/A
INTC (no operands) ODITSZAPC
'NTO Interruptif overflow Flags 00
Operands Clocks | Transters* Bytes Coding Exampls
(no operands) S3or4 5 1 INTO
IRET {no operands) ODITSZAPC
IRET tnterrupt Return Flags RRRRRRRRR
Operands Clocks | Transters* | Bytes Coding Example
(n¢ operands) 24 3 1 IRET
JA/INBE short-tabel OCDITSZAPC
JA/JN BE Jump it above/Jump if not below nor equal Flags
Operands Clocks | Transfers* Bytes Coding Example
short-label t6or4 - 2 JA ABOVE
JAE N JAE/JNB short-labet ODITSZAPCG
AE/J B Jump it above or equal/Jump if not below Flags
Operands Clecks | Transfers® | Bytes Coding Example
short-labe 16ord - 2 JAE ABOVE__EQUAL
JB JB/INAE short-iabel ODITSZAPC
/JNAE Jump if belowfJump if not above nor equal, Flags
Operands Clocks | Transters® Bytes Coding Example
short-label 18 or 4 — 2 JB BELOW

*For the 8086, add lour clocks far each 16-bil word Iransfer with an odd ad
FINTRS not an Instruction; it is included in lable 2-21 only

dress. For the 8088, add four clocks lor gach 16-bil word ransfer.
lor liming informaton,
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

JBE/JINA shori-label ODITSZAPC
JBE/JNA Jump if below or equal/Jump if not above Flags
Qperands Clocks | Transfers® | Bytes Coding Example
short-label 16ord — 2 JNA NOT_ABOVE
JC short-label ODITSZAPC
JC Jump if carry Flags
Operands Clocks | Translers” | Bytes Coding Example
short-label 160rd — 2 JC CARRY SET
JCXZ JCXZ ‘short?label Flags ODITSZAPC
JumpifCXis zero
Operands Clocks | Transfers® | Bytes Coding Example
short-label 16or8 - 2 JCXZ COUNT_DONE
JE/JZ short-label CDITSZAPC
JE/JZ Jump if equallJump if zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JZ2 ZERO
JG/INLE short-label ODITSZAPC
JG/JNLE Jump if greateriJump if notless nor equal Flags
Operands Clocks | Transfers® | Bytes Coding Example
short-label 16ord - 2 JG GREATER
JGE/JNL shori-label OCDITSZAPC
JG E/JN L Jump if greater or equal{Jump il not less Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 - 2 JGE GREATER_EQUAL
JL/JNGE short-label OQDITSZAPC
JL/JNGE Jump if less!Jump if not greater nor aqual Flags
Operands Clocks | Transfers® | Byies Coding Exampie
short-label 18 0or 4 — i JL LESS

*For the 8086, add four clocks lor each 18-bil ward Iransler with an odd address. For ihe 8088, add four clocks lor gach 18-l word iransfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data {(Cont'd.)

JLE/JNG .‘J'tigl?gssshz:t::u.t:;lr‘dump if not greater Flags epiTszarc
Operands Clocks | Transfers* | Bytas Coding Example

short-label 160r4 - 2 JNG NOT_GREATER

JMP juM“!:ptarget Flags ODITSZAPC
Operands Clocks | Transters* Bytes Coding Example

short-label 15 - 2 JMP SHORT

near-label 15 —_ 3 JMP WITHIN_SEGMENT

far-label 15 - 5 JMP FAR__LABEL

memptri6 18+EA 1 2-4 JMP [BX].TARGET

regptri6 1 - 2 JMP CX

memptr32 244 EA 2 24 JMP OTHER.SEG [S1)

JNC jll:lrﬁpsitﬁr;-tlil;?rly Flags ODITSZAPC
Operands Clocks | Transferg* Bytes Coding Example

shart-label 160r4 - 2 JNC NOT_CARRY

JNE/JNZ j:rﬁ;.li:‘rfoir;rtg?ﬂzlmpifnotzero Flags cPiTszAPRC
Operands Clocks | Transfers* | Byles Coding Exampie

short-label 16ord - 2 JNE NOT EQUAL

INO Jum f ot sverton Flags ©P1TSZAPC
Qperands Clocks | Transfers* Bytes Cading Example

short-label 16ord4 - 2 JNQ NO_OVERFLOW

JNP/JPO j:r:ﬁrr?ofgg:;ﬁgilmp it parity odd Flags epiTszAPe
Operands Clocks | Transfers* 8ytes Coding Example

short-label 16ord - 2 JPO ODD__PARITY

JNS jg:;li'lfonr;-tlas?gerl‘ Flags oDITSZAPCG
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16or 4 - 2 JNS POSITIVE

"For he 8086, add Tour clooks far each 16-bit word transter wilh an odd address. For the 8088, add four clocks lor each T6-it word tranzfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction S¢t Reference Data (Cont’d.}

JO short-label ODITSZAFPC
JO Jump if overfiow Flags
Operands Clocks | Transfers* | Bytas Coding Exampie
short-labgl 1Gor4d - 2 JO SIGNED__OVRFLW
JP/JPE short-label CQDITSZAPRC
JP/JPE Jump if parity/Jump if parity even Flags
Oparands Clocks | Transiers* | Bytes Coding Example
short-label 16 0r 4 — 2 JPE EVEN__PARITY
8 short-label ODITSZAPC
JS Jump if sign Flags
Qperands Clocks | Transfers® | Bytes Coding Example
short-label 16or4 — 2 J5 NEGATIVE
LAHF {nc operands} ODITSZAPCGC
LAHF Load AH from flags Flags
Operands Clocks | Transfers* | Bytes Coding Example
{ne operands) 4 -— 1 LAHF
LDS LDS destination,source Flaas ODITSZAPC
Load pointer using DS 9
Operands Clocks Transters | Bytes Coding Example
reg16, mam32 16+ EA 2 2-4 LDS SILDATA.SEG [DI)
LEA destination,source ODITSZAPC
LEA Load effactive address Flags
Operands Clocks | Translers* | Bytes Coding Example
reql16é, memis 2+EA — 29 LEA BX, [BP][DI]
LES destination,source QDITSZAPFPC
LES Load pointer using ES Flags
Operands Clocks | Transfers* | Bytes Coding Example
regl6, mema2 16+ EA 2 2-4 LES DI, [BX].TEXT_BUFF

For the 5088, add tour clocks for each 16-bit word transtar with an odd address. For the 8088, add four clocks for gach 18-bit word transler,

2-59

Mnemonics T lnel, 1978



8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

LOCK (nc operands) ODITSZAPCG
LOCK Lock bus Flags
Operands Clocks | Transfers* | Bytes Coding Example
{no operands} 2 - 1 LOCK XCHG FLAG.AL
LODS source-string ODITSZAPC
LO DS Load string Flags
Operands Clocks | Transfers* | Bytes Coding Example
source-string 12 1 1 LODS CUSTOMER_NAME
{repeat) source-string 9+13/rep 1irap 1 REP LODS NAME
LOOPF short-label ODITSZAPC
LOOP Loop Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 1775 - 2 LOCP AGAIN
LOOPE/LOOPZ short-label oODITSZAPC
LOOPE/LOOPZ Loy if equaliLoop if zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 180ré —_ 2 LOOPE AGAIN
LOOPNE/LOOPNZ short-label QDITSZAPC
LOO PNE/LOOPNZ Loop if not equalf Loop if not zero Flags
Operands Clocks { Transfers* | Bytes Ceding Example
short-label 19ors - 2 LOOPNE AGAIN
t NMI (external nonmaskable interrupt) OSITSZAPC
NMI Interrupt if NMI =1 Flags 00
Qperands Clocks | Transfers* | Bytes Coding Example
(nooperands) 1) 5 N{A N A

*For the B086, add four clacks for each 16-bil word transter wilth an odd address . For the €089, add four clocks for each 16-bit word ransler.
TMHMIEs notan instruction; itis included in table 2-21 only for iming intormation,
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8086 AND 8038 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

MOV destination, source ODITSZAPC
MOV Move Flags
Operands Clocks | Transfers® | Bytes Coding Example
memory, accumulator 10 1 3 MOV ARRAY [SI], AL
accumulator, memory 10 1 3 MOV AX, TEMP_RESULT
register, register 2 - 2 MOV AX,CX
register, memory 8+EA 1 2-4 MOV BP,STACK _TOP
memaory, register 9+ EA 1 2-4 MOV COUNT [D1], CX
register, immediate 4 - 2-3 MOV CL,2
memaory, immediate 10+ EA t 3-8 MOV MASK [BX][SI], 2CH
seg-req, reglé 2 - 2 MOV ES,CX
seg-req, memig 8+EA 1 2-4 MOV DS, SEGMENT _BASE
reglé, seg-reg 2 — 2 MOV BP,SS
memory, seg-reg 9+EL 1 2-4 MOV [BX].SEG_SAVE, CS
MOVS MOVS dest-string, source-string Flags ODITSZAPC
Move string 9
Operands Clocks | Transfers* | Bytes Coding Example
dest-ziring, source-string 18 2 1 MOVS LINE EDIT_DATA
{repeat) desl-string, source-siring 9+17irep 2frep 1 REP MOWS SCREEN, BUFFER
MOVSB/MOVSW (no operands) ODITSZAPC
MOVSB/MOVSW Move string (byte fword) Flags
Operands Clocks | Transfers® | Bytes Coding Example
{no operands} 18 2 1 MOVEB
{repeat) {no operands) 94+t7irep 2irep i REP MOVSW
MUL sourcs OQDITSZAPC
MUL Multiplication, unsigned Flags X U uUuy X
Operands Clocks | Transfers* | Bytes Coding Example
regs 70-77 — 2 MUL BL
reg1 118-133 - 2 MUL CX
mam3j (76-53) i 2-4 MUL MONTH [S1}
+EA
mem16 {124-139) 3 2-4 MUL BAUD__RATE
+E&

*Forthe 8086, add four clocks for each 16-bit word tranater wilth an odd address. For the B088, add four clocks for each 16-bil word Wransler.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

NEG destination

CDITSZAPCG

NEG Negate Flags X XXX XA
Operands Clocks | Transters* | Bytes Coding Exampte
register 3 — 2 NEG AL
memory 16+ EA 2 2-4 NEG MULTIPLIER
*Qif destination =0
NOP (nc operands) CDITSZAPC
NOP No Operation Flags
Operands Clocks | Transfers® | Bytes Coding Example
{no operands) 3 - 1 NOP
NOT destination ODITSZAPC
NOT Logical not Flags
Cperands Clocks | Transfers* | Bytes Coding Example
register 3 — 2 NOT AX
memary 16+ EA 2 2-4 NOT CHARACTER
OR destination,source CDITSZAPC
OR Logical inclusive or Flags q XXUXxao
Operands Clocks | Transfers* | Bytes Ceding Example
reglster, register 3 - 2 OR AL.BL
register, memory 9+EA 1 24 OR DX, PORT_ID [DI)
memory, register 16+EA 2 2-4 OR FLAG__BYTE, CL
accumulator, immediate 4 — 2-3 OR AL, 011011008
register, mmediate 4 — 34 QR CX,01H
memory, mmediate 17+EA 2 36 OR [BX].CMD._WORD,0CFH
OUT port,accumulator ODITSZAPC
ouT Qutput byte or word Flags
Cperands Clocks | Transters* | Bytes Coding Example
immed8, accumulator 10 1 2 OUT 44, AX
DX, accumulator 8 1 1 OUT DX, AL
POP destination CDITSZAPC
POP Pop word off stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 8 1 1 POP DX
seg-reg{CSillegal) 8 1 1 POP D5
memory 17+EA 2 2-4 POP PARAMETER

“For the 8086, add four clocks for each 16-bit word transter with an odd address. For the 8088, add four clouks tor each 18-bit word transfer.
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Tabte 2-21. Instruction Set Reference Data (Cont’d.)

POPF {no operands) CDITSZAPCG
POPF Pop flags off stack Flag* p RRRRRRRR
Operands Clocks | Transfers” | Bytes Coding Example
(no operands) 8 1 1 POPFE
PUSH source ODITSZAPC
P US H Push word onto stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 11 1 1 PUSH sI
seg-reg {CS tegal) 10 1 1 PUSH ES
meamaory 16+EA 24 PUSH RETURN__CODE (S]]
PUSHF (no operands) ODITSZAPC
PUSHF FPush flags onto stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
{no operands) 10 1 1 AUSHF
RCL destination,count ODITSZAPC
RCL Rotate left through carry Flags X
Operands Clocks | Transfors™ | Bytes Coding Example
register, 1 2 - 2 RCL CX, 1
register, CL 8 + 4/bit -— 2 RCL AL CL
memary, 1 15+EA 2 2-4 RCL ALPHA, 1
memory, CL. 20 + EA+ 2 2-4 RCL [BP].PARM, GL
4/blt
RCR designation,count ODITSZAPC
HCR Rotate right through carry Flags X X
Operands Clocks | Transters* | Bytes Coding Example
register, 1 2 — 2 RCR BX, 1
register, CL d+4aibit - 2 RCR BL,CL
memory, 1 15+ EA 2 2-4 | RCR [BX].STATUS, 1
memery, GL 204+ EA+ 2-4 RCR ARRAY |DI], CL
4/ bit
REP {nc operands) OQDITSZAPC
REP Repeat string operation Flags
Qperands Clocks | Transfers® | Bytes Coding Example
(no operands) 2 — 1 REP MOVS DEST, SRCE

*Forthe 8086, add four clocks tor each 16-bit word transter with an odd address_ For the 8088. add four clocks lor each 16-bil ward transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

REPE/REPZ REPE/REPZ (no operands) Flags ODITSZAPG
Aepeat string operation while equal/while zero 9
Operands Clocks | Transfers® | Bytes Coding Example
{no operands) 2 — 1 REPE CMPS DATA, KEY
REPNE/REPNZ {no operands) ODITSZAPC
RE PNE/HEPNZ Repeat string operation while not equal/not zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
{no operands) 2 - 1 REFPME SCAS INPUT __LINE
RET RET optional-pop-value Flags CDITSZAPC
Return from procedure 9
Operands Clocks | Transfers* | Byles Coding Example
{intra-segment, ne pop) [ 1 1 RET
(intra-segment, pop) 12 1 3 RET 4
{inter-segment, no pop} 18 2 1 RET
{inter-segment, pop} 17 2 3 RET 2
ROL destinatien,count ODITSZAPCG
ROL Rotate left Flags X
Operands Clocks Transfers | Bytes Coding Examples
register, 2 — 2 ROL BX,1
ragister, CL 8+ 4/bit —_ i ROL DI, CL
memory, 1 153+ EA 2 2-4 ROL FLAG__BYTE [DI],t
memary, CL 20+EA + 2 2-4 ROL ALPHA ,CL
47 bit
ROR destination,count ODITSEZAPC
ROR Rotate right Flags X X
Operand Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 ROR AL,1
register, CL 8+ 4/bit — 2 ROR BX,CL
memory, 1 15+ EA 2 2-4 ROR PORT STATUS, 1
memory, CL 20+EA+ 2 24 ROR CMD_WORD,CL
4/ bit
SAHF (no operands) ODITSZAPC
SAHF Store AH into flags Flags RRRRR
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 SAHF

*For the 8088, add four ¢locks for @éach 16.blt word transfer with an 0dd address. For the 8088, add four clocks for each 16-biL word {ransfar,
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Table 2-21. Instruction Set Reference Data (Cont*d.)

SAL/SHL destination,count CODITSZAFC
SAL/SHL Shiftarithmetic left/ Shift logical left Flags X
Opearands Clocks | Transfers* | Byies Coding Examples
register 1 b - 2 5AL AL1
rapister, CL 84 4/bit — 2 SHL DI CL
memory,1 154 EA 2 2-4 | SHL [BX}.OVERDRAW, 1
memary, CL 20+EA+ 2 2-4 SAL STORE_COUNT, CL
A7 bit
SAR destination, source OCDITSZAFRC
SAR Shift arithmetic right Flags XX U X X
Cperands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 SAR DX, 1
register, CL 8+ 4/bit - 2 SAR DI, CL
memory, 1 15+EA 2 2-4 SAR N__BLOCKS, 1
memory, CL 20+ EA + 2 2-4 SAR N BLOCKS, CL
4/ bit
SBB destination,source ODITSZAPC
SBB Subtract with borrow Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 SBB BX,.CX
register, memory 9+EA 1 2-4 SBB O, |BX|.PAYMENT
memory, register 16+ EA 2 24 SBB BALANCE, AX
accumulator, immediate 4 — 2.3 SBE AX, 2
register, immediate 4 — 3-4 SBB CL,t
memory, immediate 17+ EA 2 36 5BB COUNT(SI], 10
SCAS dest-siring ODITSZAPC
SCAS Sean string Flags X XXX X
Operands Clocks | Transfers* | Bytes Coding Example
dest-string 15 1 1 SCAS INPUT_LINE
{repeat) dest-string Q+15frep 1irep 1 REPNE SCAS BUFFER
SEGMENTT SEGMENT override prefix Flags CD!TSZAPC
Qverride to specified segment 9
Operands Clocks | Transfers™ | Bytes Coding Example

{no operands)

2 —_

1

MOV S5S8:PARAMETER, AX

“For the 8084, add four clocks for sach tB-bit word transfar with an odd address. For the 5088, add tour clacks for each 16-bit word Iransfer,

T ASk-86 incorporales the segment override prefix inlo the operand specitication and not as a separate inslruchion. SEGMENT is included in labie

221 only for timing informaltion,
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Table 2-21. Instruction Set Reference Data (Cont’d.)

ODITSZAPC

SHR S Fuce x
Operands Clocks | Transfers® | Bytes Coding Example

register. 1 2 - 2 SHR Si,1

register, CL B+ 4{bit - 2 SHR S, CL

memory, 1 15+ EA 2 24 SHR ID_BYTE [S1][BX], 1

memory, CL 20+EA+ 2 2-4 SHR INPUT_WORD, CL

41bit

SINGLE STEPT ﬁlgﬁtstsi;ff:i:rapﬂag interrupt) Flags oD (I} ‘[I:-r SZAPC
Operands Clocks | Transfers* | Bytes Coding Example

{no operands} 50 5 Nid | NIA

STC g;?c(anr?yofﬁ::;ands} Flags OCDITSZAP ?
Operands Clocks | Transfors* | Byies Coding Example

{no opearands) 2 — 1 STC

STD A fiage 05 TSTAPC
Operands Clocks | Transfers* | Bytes Coding Exampla

{no opearands) 2 - 1 STD

ST B g Flags 00| TSZAPC
Operands Clocks | Transfers* | Bytes GCoding Example

(no operands} 2 — 1 STI

STOS fage OPITSZAPC
Operands Clocks | Transfers™ | Bytes Coding Example

dest-string 1 1 1 ST0S PRINT_LINE

(repeat) dest-string 9+10/rep 1frep 1 REP STOS DHSPLAY

“For Ihe BOBE, add four clocks far aach 16-bit word transfer with an odd address. For the 8088, add feur clocks for each 16-bit word fransfer.

£SINGLE STEF Is notan Instruction: itis included in tabbe 2-21 gnly for fiming inlormation.

Maemanics - Inled,
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Table 2-21. Instruction Set Reference Data (Cont’d.)

SUB destination,source ODITSZAPC

SUB Subtraction Flags XX X X X
Operands Clocks | Transfers* | Bytes Coding Example

register, register 3 - 2 SUB CX, BX
register, memory 9+EA 1 2-4 SUB DX, MATH_TOTAL [SI]
memory, register 16+EA | ¥ 2 2-4 | suB [BP+2], 0L
accumulator, immediate 4 - 2-3 SUB AL 10
register, immediate 4 — 34 SUB S, 5280
memaory, immediate 17 +EA 2 36 SUB [BP].BALANCE, 1400

TEST

TEST destination,source

Test or non-destructive logical and

ODITSZAPC
Flags XX UX0

Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 - 2 TEST $1,Dl
register, memory 9+ EA 1 -4 TEST S1, END_COUNT
accumulator, immediate 4 — 2-3 TEST AL, 001000008
register, immediate 5 — 3-4 TEST BX,0CC4H
memory, immediate 11 +EA - 3.6 TEST RETURN_CODE, 01H
WAIT (no operands) ODITSZAPC
WAIT Wait while TEST pin not asserted Flags
Operands Clocks | Transters* ]| Bytes Coding Example
{nc operands) 3+ 5n — 1 WAIT
XCHG XCHG destinatlon,scurce Flaas ODITSZAPC
Exchange 9
Operands Ciocks | Transiers* | Bytes Coding Example
accumulator, reglé 3 — 1 XCHG AX, BX
memaory, register 17+ EA 2 24 XCHG SEMAPHORE, AX
register, register 4 —_ 2 XCHG AL, BL
XLAT XLAT source-table Flags QDITSZAPC
Translate 9
Operands Clocks | Transfers* | Bytes Coding Example
source-table 11 1 1 XLAT ASCI_TAB

*For the BOBS, add four clocks for each 18-bit word transfer with an odd address. For Lhe 8088, add four clocks For sach 16-bit word transfer.

*_R7
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PROCESSING UNITS

Table 2-21. Instruction Sct Reference Data (Cont’d.)

XOR destination,source ODITSZAPC

XOR Logical exclusive or Flags 0 XXUX0

Operands Clocks | Transfers™ | Bytes Coding Example
register, register 3 - pd XOR CX,BX
register, memaory 3+ EA 1 2-4 XOR L, MASK_BYTE
memoty, register 16+ EA 2 2-4 XOR ALPHA [SI], DX
accumulator, immediate 4 - 2-3 XOR AL, 01004010B
register, immediate 4 — 34 XOR 51, 00C2H
memory, immediate 17+ EA 2 3-6 X0OR RETURN_CODE, 0D2H

*For \he BO36, add four clogks for each 16-bil word transfer with an odd address. For (he 8088, add four clocks Tor each 16-hit word transfer,

2.8 Addressing Modes

The 8086 and 8088 provide many different ways
to access instruction operands. Operands may be
contained in registers, within the instruction
itself, in memory or in 170 ports. Ln addition, the
addresses of memory and /O port operands can
be calculated in several different ways. These
addressing modes greatly exiend the flexibility
and convenience of the instruction set. This sec-
tion briefly describes register and immediate
opcrands and then covers the 8086/8088 memory
and /O addressing modes in detail.

Register and Immediate Operands

[nstructions thax specify only register operands
are generally the most compact and fastest
executing of all instruction forms. This is because
the register “addresses’™ are encoded in instruc-
tions in just a fow bits, and because these opera-
tions are performed entirely within the CPU (no
bus cycles are run). Registers may serve as source
operands, destination operands, or both.

immediate operands are constant data contained
in an instruction. The data may be either 8 or 16
hits in length. [mmediate operands can be
accessed quickly because they are available
direcily from the instruction qucuc; like a register
operand, no bus cycles need to be ran to obtain an
immediate operand. The limitations of immediate
operands are that they may only serve as source
operands and that they are constant values.

Memory Addressing Modes

Whereas the EU has direct access to register and
immediate operands, memory operands must be
transferred to or from the CPU over the bus,
When the EU needs to read or write a memory
operand, it must pass an offset value to the BIU,
The BIU adds the offset to the (shifted) content of
a segment register producing a 20-bit physical
address and then executes the bus cycle(s) needed
to access the operand.

The Effective Address

The offset that the EU calcubates for a memory
operand is called the operand’s effective address
or EA, [t is an unsigned 16-bit number that
expresses the operand’s distance in bytes from the
beginning of the segment in which it resides. The
EU can calculate the effective address in several
different ways. Information encoded in the
second byte of the instruction tells the EU how 1o
calculate the cffective address of each memory
operand. A compiler or assembler derives this
information from tihe statement or instruction
written by the programmer. Assembly language
programmers have access to all addressing modes.

Figure 2-34 shows that i1he execution unit
calculates the EA by summing a displacement, the
cantent of a base register and the content of an
index register. The fact that any combination of
these three components may be present in a given
instruction gives rise to the variety of 3036/8088
memory addressing modes.

¥ ]
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Figure 2-34. Memory Address Computiation

The displacement e¢lement is an 8- or 16-bit
number that is contained in the instruclion. The
displacement generaily is derived from the posi-
tion of the operand name (a variable or label) in
the program. 1t also is possible for a programmer
to modify this value or to specify the displace-
ment explicitly.

A programmer may specify that either BX or BP
is L0 serve as a base register whose content is to be
used in the EA computation. Similarly, either Sl
or DI may be specified as an index register.
Whereas the displacement value is a constant, the
contents of the base and index registers may
change during execution. This makes it possible
for one instruction 10 access different memory
locations as determined by the current values in
the base and/or index registers.

It takes time for the EU to calculate a memory
operand’s effective address. In general, the more
¢lements in the calculation, the longer it takes.

Table 2-20 shows how much time is required to
compuie an effective address for any combination
of displacement, base register and index register.

Direct Addressing

Direct addressing (see figure 2-35) is the simplest
memory addressing mod¢. No registers are in-
volved; the EA is taken directly from the displace-
ment field of the instruction. Direct addressing
typically is used to access simple wvariables
(scalars).

Register Indirect Addressing

The cffective address of a memory operand may
be 1aken directly from one of the base or index
tegisters as shown in figure 2-36, One instruction
can operate on many different memory locations
if the value in the base or index register is updated
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appropriately. The LEA (load elfective address)
and arithmetic instructions might be used to
change the register value.

Note that any 16-bit general regisier may be used
for register indirect addressing with the JMP or
CALL instructions.

| orcope | wmoorm | oiseiajcement 3
-

——

Figure 2.35. Direct Addressing
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—_ =T D
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Figure 2-36. Register Indirect Addressing

Based Addressing

In based addressing (figure 2-37), the effective
address is the sum of a displacement value and the
content of register BX or register BP. Recall that
specifying BP as a base register directs the BIU to
obtain the operand from the current stack seg-

--H

I OPCODE ’ MOD R/M | DISPLAC|EMENT _I
BX I
o Q@

Figure 2-37. Based Addressing

ment {unless a scgment override prefix is present).
This makes based addressing with BP a very con-
venient way 1o access stack data (see section 2.10
for examples).

Based addressing also provides a straightforward
way to address structures which may be located at
different places in memory (see figure 2-38). A
base register can be pointed at the base of the
structure and elernents of the structure addressed
by their displacements from the base, Different
copies of the same structure can be accessed by
sitnply changing the base register,

HIGH ADDRESS

DISPLACEMENT DISPLACEMENT
[ e 1 4GE |sTaTUS T
RATE
) VAC SICK
DEFT oy
r BASE REGISTER [r{urLoves [ Basereaisten |
¥
' | & L ——,
o "8
L= | ,
«GE_|sTaTus |
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YAD SICK |
CEPY | DI
EMFLOYEE ol — ——— — J
LOW ADDRESS

Figure 2-38. Accessing a Structure With Based
Addressing

Indexed Addressing

In indexed addressing, the effective address is
calculated from the sum of a displacement plus
the content of an index register (81 or DI) as
shown in figure 2-39. Indexed addressing often is

I OPCODE | MCD R/M | DISPLAC|EMENT 1
L _ N ]
St |
*—1@

Figure 2-39. Indexed Addressing
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used to access elements in an array (see figure
2-40). The displacement locates the beginning of
the array, and the value of the index register
selects one element (the first element is selected if
the index register contains 0). Since all array
elements are the same length, simple arithmetic
on the index register will select any element,

Based Indexed Addressing

Based indexed addressing generates an effective
address that is the sum of a base register, an
index register and a displacement (see figure
2-41}), Based indexed addressing is a very flexible
mode because two address components can be

varied at execution time.

Based indexed addressing provides a convenient
way for a procedure to address an array allocated
on a stack (see figure 2-42). Register BP can con-
tain the offset of a reference point on the stack,
typically the top of the stack afier the procedure
has saved registers and allocated local storage.
The offset of the beginning of the array from the
reference point can be expressed by a displace-
ment value, and an index register can be used to
access individual array elements.

Arrays contained in structures and matrices (twd-
dimension arrays) also could be accessed with.
based indexed addressing.
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Figure 2-40. Accessing an Array With Indexed

Addressing
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Figure 2-41. Based Indexed Addressing
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Figure 2-42. Accessing a Stack Array With Based Indexed Addressing
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String Addressing

String instructions do not use the normal memory
addressing modes to access their operands,
Instead, the index registers are used implicitly as
shown in figure 2-43. When a string instruction is
execuled, 51 is assumed to point to the first byte
or word of the source string, and D1 is assumed (o
point to the first byte or word of the destination
string. In a repeated string operation, the CPUs
automatically adjust Sl and DI to obtain subse-
quent bytes or words.

1/0 Port Addressing

If an 1/0 port is memory mapped, any of the
memory eperand addressing modes may be used
to access the port. For example, a group of ter-
minals can be accessed as an “‘array.” String
instructions also can be used to wransfer data 1o
memory-mapped ports with an appropriatc hard-
ware interface. Section 2,10 contains examples of
addressing memory-mapped /O ports.

Two different addressing modes can be used (o
access ports located in the 1/O space: these are
illustrated in figure 2-44. [n direct port address-
ing, the port number is an 8-bit immediate

operand. This allows fixed access o poris
numbered 0-235. Indirect port addressing is
similar to register indirect addressing of memory
operands. The port number is taken from register
DX and can range from 0 to 65,535, By pre-
viously adjusting the content of register DX, one
instruction can access any port in the I/0 space.
A group of adjacent ports can be accessed using a
simple software loop (hat adjusts the value in DX

2.9 Programming Facilities

A comprehensive integrated set of (ools SUpports
8086/8088 software development. These tools are
programs that run on Intellec® 800 or Series 11
Microcomputer Developmeni Systems under the
ISIS-11 operating system, the same hardware and
operating system used to develop sofeware for the
8080 and the 8085. Since the 8086 and ROSS are
software-compatible with one another, the same
tools are used for both processors to provide
programmers with a uniform development
environment,
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Figure 2-43. Suring Qperand Addressing
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Figure 2-44, 1/0 Port Addressing
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Software Development Overview

A program that will uliimately execute on an
8086- or BOB8-based system is developed in steps
(see figure 2-45). The overall program is com-
posed of functional units called modules. For
purposes of this discussion, a module is a section
of code that is separately created, edited, and
compiled or assembled. A very small program
might consist of a singte module; a large program
could be comprised of 100 or more modules. The
8086/8088 LINK-86 utility binds modules
together into a single program. (The module
structure of a program is critical to its suceessful
developmens and maintenance; see section 2.10
for guidelines.)

8086 and 3088 modules can be written in either
PL/M-86 or ASM-86 (see table 2-22). PL/M-86 is
a high-level language suitable for most
microprocessor applications, It is easy to use,
even by programmers who have little experience
with microprocessors. Because it reduces sofiwate
devetopment time, PL/M-86 is ideal for most of
the programming in any application, especially
applications that must get 1o market quickly.

ASM-86 is the BO86/8088 assembly language.
ASM-86 provides the programmer who is familiar
with the CPU architecture, access 10 all processor
features. For critical code segments within pro-
prams that make sophisticated use of the hard-
ware, have extremely demanding performance or
memory constraints, ASM-86 is the best choice.
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Figure 2-45. Software Development Process
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Table 2-22. PL/M-86/ASM-86 Characteristics

PL/M-86

ASM-86

* FastDevelopment
* Less Pragrammer Training

* Detailed Hardware Knowledge Not Requirad

* Fastest Execution Speed
* Smallest Memory Requirements

* Acceass To All Processor Facilities

The languages are completely compatible, and a
judicious combination of the two often makes
good sense. Prototype software can be developed
rapidly with PL/M-86. When the system is
operating correctly, it can be analvzed to see
which sections can best profit from being written
in ASM-B6, Since the logic of these sections
already has been debugged, selective rewriting can
be done guickly and with low risk.

Each PL/M-86 or ASM-86 modulc (called a
source moduel) is keyed into the Intellec™ system
using the 1518-11 text editor and is stored as a
diskette file. This source file is then input to the
appropriate language translator (ASM-86
assembler or PL/M-86 compiler). The language
translator creates a diskette file from the source
file, which is called a relocatable object module.
The translator also lists the program and flags any
errors detected during the translation. The
relocatable object module contains the 80868088
machine instructions that the translator created
from the statements in the source module. The
lerm *'relocatable” refers to the fact that all
refer¢nces to memory locations in the module are
relative, rather than being absolute memory
addresses. The modute generally is not executable
until the relative references are changed to the
actual memory locations where the module will
reside in the execution system’s memory. The pro-
cess of changing the relative references to
absolute memory locations is called locating.

There are very good teasons for not locating
modules when they are translated. First, the exa-
cution system’s physical memory configuration
(where RAM and ROM/PROM segments are
actually located in the megabyte memory space)
may not be known at the time the modules are
written. Second, it is desirable to be able to use a
common module (e.g., a square root routine) in
more than onc system. [f absolute addresses were
assigned at tranglation time, the common module
would either have 10 occupy the same physical

addresses in every sysiem, or separate versions
with different addresses would have 10 be main-
tained for each system. When locating is deferred,
a single version of a common routine can be used
by any number of systems. Finally, the locations
of modules typically change as a system is
developed, maintained and enhanced. Separating
the location process from the translation process
means that as modifications are made, unchanged
modules only need 1o be relocated, not
retranslated.

Relocatable object modules may be placed into
special files called libraries, using the LIB-86
library manager program. Libraries provide a
convenient means of collecting groups of related
modules so that they can be accessed automati-
cally by the LINK-86 program.

When enough relocatable object modules have
been created to test the system, or part of jt, the
modules are linked and located. Linking com-
bines all the separate modules into a single pro-
gram. Laocating changes the relative memeory
references in the program to the actual memory
locations where the program will be loaded in the
execution system. The link and locate process also
is referred to as R & L, for relocation and linkage.

Two other programs round out the software
development tools available for the 8086 and
8088. OH-86 converts an absolute object file into
a hexadecimal format used by some PROM pro-
grammers and system loaders (for example, the
SDK-86 and iSBC 957™ joaders). CONV-86 can
do most of the conversion work required to
translate $080/8085 assembly language source
modules into ASM-86 source modules,

The 8086/8088 software development facilities
arg covered in more detail in the remainder of this
section. However, these are only introductions to
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the use of these tools. Complete documentation is
available in the following publications available
from Intel’s Literature Department:

-

ISIS-II:
ISIS-T1 System User’s Gaide, Order No. 9800306

ASM-86:

MCS-86 Assembiy Language Reference Manual,
Order No. 9800640

MCS-86 Assembler Operating Instructions for
IS1S-11 Users, Qrder No, 9300641

PL/M-86:

PL/M-86 Programming Manual, Order No.
9800466

ISIS-IT PL/M-86 Compiler Operator’s Manual,
Order No. 9800478

LINK-86, LOC-86, LI1B-86, OH-86:

MCS-86 Software Development Ultilities
Operating Instructions for ISIS-ff Users, Order
No. 9800639

CONV-86:

MCS-86 Assembly Language <Converter
Operating Insiructions for ISIS-I Users, Order
No. 9800642

PL/M-86

PL/M-86 is a general-purpose, high-level
language for programming the 8086 and 8088
microprocessors. It is an extension of PL/M-80,
the most widely-used, high-level programming
language for microprocessors. (PL/M-80 source
programs can be processed by the PL/M-86 com-
piler; the resulting object program is generally
reduced by 15-30% in size.) PL/M-86 is suitahle
for all types of microprocessor software from
operating systems to application programs.

PL/M-86’s purpose is simple: to reduce the time
and cost of developing and maintaining software
for the 8086 and BO8S. [t accomplishes this by
creating a programming environment that, for the
most part, is distinct from the architecture of 1he
CPUs. Registers, segments, addressing modes,
stacks, ete., are effectively “‘invisible” to the

PL/M-86 programmer. Instead, the processors
appear to respond to simple commands and
familiar algebraic expressions. The responsibility
for translating these source statéments into the
machine¢ instructions ultimately required to exe-
cute on the 8086/8088 is assumed by the PL/M-86
compiler. By **hiding’’ the details of the machine
architecture, PL/M-86 encourages programmers
to concentrate on solving the problem at hand.
Furthermore, because PL/M-86 is closer to
natutal language, it is easier to ‘‘think in
PL/M-86"" than it is to *‘think in assembly
language.’’ This speeds up the expression of a
program solution, and, equally imporiant, makes
that solution easier for someong other than the
original programmer to understand. PL/M-86
also contains all the constructs necessary for
structured programming,

Statements and Comments

A programmmer builds a PL/M-86 program by
writing statements and comments {see figure
2-46). There are several different types of
statements in PL/M-86; they always end with a
semigolon. Blanks can be used freely before,
within, and after statements to improve read-
ability. A statement also may span more than cne
tine,

The characters **/*” start a comment, and the
characters “*/*’ end it; any characters may be
used in between. Comments do not affect the exe-
cution of a PL/M-86 program, but all good pro-
grams ar¢ thoughtfully commented. Comments
are notes that document and clarify the program's
operation; they may be written virtually anywhere
in a PL/M-86 program.

Data Definition

Most PL/M-86 programs begin by defining the
data items {variables) with which they are going to
work. An individual PL/M-86 data element is
called a scalar. Every scalar variable has a
programmer-supplied name up to 31 characters
long, and a type. PL/M-86 supports five types of
scalars: byte, word, integer, real, and pointer.
Table 2-23 lists the characteristics of these
PL/M-86 data types.

2-75
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/" TRAFFIC DATA RECORDER CONTROL PROGRAM*
*YERSION 2.2, RELEASE 5, 23APR79.*
*THIS RELEASE FIXES THREE BUGS*
“DOCUMENTED IN PROBLEM REPORT #16."/

{*COMPUTE TOTAL PAYMENT DUE*/

TOTAL = PRINCIPAL + INTEREST;

IF TERMINALSREADY

THEN GALL FILLSBUFFER;
{*WAIT 50 MS FOR RESPONSE*/

ELSE CALL WAIT (50);

Figure 2-46. PL/M-86 Statements and Comments

Table 2-23. PL/M-86 Data Types

TYPE BYTES RANGE USAGE
BYTE 1 O to 255 Unsigned Integer, Character
WORD 2 0to 65,535 Unsigned Intager
32,768 to .
INTEGER Z 432767 Signed Integer
1%10"8¢p ) )
REAL 4 3.37 x 10+38 Floating Point
FPOINTER 214 NIA Address Manipulation

Variables are defined by writing 2 DECLARE
staternent of this form:

DECLARE scalar-name type;

Options of the DECLARE statement can be used
to specify an initial valwe for the scalar and to
define a serkes of items in a shorthand form.

Besides scalar variables, scalar constants may be
used in PL/M-86 programs (see figure 2-47).
Constants may be writien ““as is’® or may be given
names to improve program clarity,

Scalars can be aggregated into named collections
of data such as arrays and structures. An array is
a collection of scalars of the same type (all
integer, all real, etc.). Arrays are useful for
representing data that has a repetitive nature. For

example, monthly rainfall samples could be
represented as an array of 12 elements, one for
each month:;

DECLARE RAINFALL (12) REAL:

Each clement in an array is accessible by a
number called a subscript which is the element's
relative location in the array. In PL/M-86, the
first element in an array has a subscript of 0; it is
considered the **0th” element. Thus, RAINFALL
(11) refers to December’s sample. The subscript
need not be a constant; variables and expressions
also may be used as subscripts.

Strings of character data are typically defined as
byte arrays. Characters can be accessed with
subscripts or with powerful string-handling func-
tions built into PL/M-86.
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10 /*DECIMAL NUMBER™/
0AH /*HEXADECIMAL NUMBER*/
12Q /*OCTAL NUMBER*/
00CO1010B /" BINARY NUMBER™/
10.0 /*FLOATING POINT NUMBER"/
1.081 /"FLOATING POINT NUMBER*/

A

{"CHARACTER"{

["CONSTANTS MAY BE GIVEN NAMES*/
DECLARE STATUSSPORT LITERALLY ‘OFFEH’;
DECLARE THRESHOLD LITERALLY ‘68.5";

Figure 2-47, PL/M-86 Constants

A structure is a collection of related data elements
that do not necessarily have the same type. The
elements are related by virtue of “belonging’’ to
the entity represented by the structure. Here is a
simple structure declaration:

DECLARE BRIDGE STRUCTURE
(SPAN WORD,
YREBUILT BYTE,
AVGSTRAFFIC REAL);

The year the bridge was built could be accessed by
writing BRIDGE. YREBUILT; the structure ele-
ment name is ““‘qualified’” by the dot and the
structure name. This allows structures with the
same element names to be distinguished from
each other (e.g., HIGHWAY YRIBUILT).

Arrays and structures can be combined into more
complex data aggregaies:

* array elements may be structures rather than
scalars,

* astructure element may be an array,

* structures in arrays may themseives contain
arrays.

Figure 2-48 provides sample PL/M-86 data
declarations.

Assignment Statement

Data that has been defined can be operated on
with PL/M-86 executable statements. The fun-
damental executable statement is the assignment
statement, written in this form:

variable-name = expression;

This means ‘‘evaluate the expression and assign
{move) the result to the variable.””

There are three basic classes of expressions in
PL/M-86; arithmetic, relational and logical (see
table 2-24 and figure 2-49). All expressions are
combinations of operands and operators,
although an expression ¢an <onsist of a single
operand. Operands ar¢ variables and constants;
operators vary according to the type of expres-
sion. Evaluation of an expression always vields a
single result; different classes of expressions yield
different types of results.

Table 2-24. Characteristics of PL/M-86 Expressions

EXPRESSION OPERATORS RESULT
ARITHMETIC +,~,* 1, MOD NUMBER
o “TRUE” - FFH
RELATIONAL > &, =, =, <= CEALSE" - O
LOGICAL AND, OR, XOR, NOT 8/16-BIT STRING
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it SCALARS "/

DECLARE SWITCH BYTE;
DECLARE COUNT WORD, 1”1 SGALAR"/
INDEX INTEGER; 1"1 SCALAR"/
DECLARE (NET, GROSS, TOTAL) REAL; 1"3 SCALARS"/
/**** ARRAYS***+/
DECLARE MONTH(12)  BYTE;
DEGLARE TERMINAL__LINE (80) BYTE;

{7 *8TRUCTURE" "/
DECLARE EMPLOYEE STRUCTURE

(\D_NUMBER WORD,
DEPARTMENT BYTE
RATE REAL);

i *ARRAY OF STRUCTURES®"**}

DECLARE INVENTORY__ITEM (100) STRUCTURE
{PART_NUMBER WORD,
ON_HAND WORD,
RE_ORDER BYTE},

it *ARRAY WITHIN STRUCTURE****{

DECLARE GOUNTY__DATA STRUCTURE
{NAME (20} BYTE,
TEN__YR__RAINFALL(10) BYTE,

PER CAPITA_INCOME REAL);

Figure 2-48. PL/M-86 Data Declarations

*ARITHMETIC !

A=2:B=3

B=B+1; 1B CONTAINS 4%/
C=(A"B)-2 1S CONTAINS 6*/
C=([{A"B}+3IMOD3I; *C CONTAINS 2%/
I*"RELATIONAL*/

A=2,B=3

C=B>A; {* G GONTAINS OFFH™/
C=B<>A; }*C CONTAINS OFFH*/
C=B=(A+1); {*C CONTAINS OFFH™/
*LOGICAL~/

A =001130001B;
B = 100050001 B;

f*315 FOR READABILITY ™/

C=NOTE; f*CCONTAINS 0111$1110B" |
C=AAND B; 1*C CONTAINS Q000800018 /
C=AORB,; 1*C CONTAINS 1011300018+ /
C=BXORA; 1*C CONTAINS 1011300008* /

={A ANDB)QROFOH;  /*C CONTAINS 1111500018*/

Figure 2-49, Expressions in PL/M-86 Assignment Statements
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Program Flow Statements

Simple PL/M-86 programs can be written with
just DECLARE and assignment statements. Such
programs, however, execute exactly the same
sequence of statements every time they are run
and would not prove very useful, PL/M-86 pro-
vides statements that change the flow of control
through a program. These statements allow sec-
tions of the program to be executed selectively,
repeated, skipped entirely, etc.

The IF statement (figure 2-50) selects one or the
other of two statements for execution depending
on the result of a relational expression. The IF
statement is written:

IF relational-expression
THEN statementl;
ELSE statement?;

Statementl is executed if the expression is ““true’*:
staternent2 is not executed in this case. If the rela-
tion is “‘false,”” statementl is skipped and state-
ment? is executed. In delermining the “*truth” of
an expréssion, the [F statement only examines the
low-order bit of the result (1="*"true’’). Therefore,
arithmetic and logical expressions also may be
used in an IF statement.

A=3:B=5;

IFA<B
THEN MINIMUM = 1;
ELSE MINIMUM = 2;

I"EXECUTED*/
[*SKIPPED"{

MORE DATA =0FFH;

IF NOT MORE_DATA
THEN DONE = 1;
ELSE DONE =g(;

I*SKIPPED* f
{"EXECUTED" ¢

{*NESTED IF STATEMENTS*/
CLOCK_ON =1; HOUR=24; ALARM=OFF;
IF CLOCK_ON
THEN IFHOUR = 24
THEN IF ALARM = OFF
THEN HOUR = 0; /*EXECUTED"{

Figure 2-50. PL/M-86 IF Statements

A DO block begins with a DO statement and ends
with an END statement. All intervening
statements are part of the block. A DO block can
appear anywhere in a program that an executable
staternent can appear. There are four kinds of DO
statements in PL/M-86: simple DO, DO CASE,
interative DO, and DO WHILE.

A simple DO statement (figure 2-51) causes all the
statements in the block 1o be treated as though
they were a single statement. Simple DOs enable a
single IF statement to cause multiple statements
to be executed (the alternative would be to repeat
the IF statement for every statememt to be
execuied).

{*SIMPLE DO*/

A=5; B=9;

IF{A+2)< B THEN DO;
X=X-1; {*EXECUTED*{
Y {X)=0; I*EXECUTED"/
END;

ELSE DO;

X=X+1; {*SKIPPED*{
Y{X)=1; /*SKIPPED*/
END:

{*"DO CASE*/

A=2

DO CASE {A);

X =XH; f*SKIPPED*/

X =X+2; I*SKIPPED*/
X=X+3; {"EXECUTED*f
X=X+, I SKIPPED*
END;
Figure 2-51. PL/M-86 Simple DO

and DO CASE

DO CASE (figure 2-51) causes one statement in
the DO block to be selected and executed depend-
ing on the result of the expression (usually
arithmetic) written immediately following DO
CASE:

DO CASE arithmetic-expression;

If the expression yields 0, the firsi statement in the
DO bleck is executed; if the expression yields 1,
the second statement is executed, atc. A statement
in the DO block may be null (consist of only a
semicolon) to cause no action for selected cases,
DO CASE provides a rapid and easily-understood
way to respond to data like ““transaction codes”

-—
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where a different action is required for each of
many values a code might assume (an alternative
would be an IF statement for every value the code
could assume).

An iterative DO block (figures 2-52 and 2-53) is
executed lrom O to an infinite number of times
based on the relaticnship of an index variable to
an expression that Terminates execution. The
general form is;

DO index = starl-expr TQ slap-aexpr BY stap-eupr:

The “BY step-expr” is optional, and the step is
assumed 10 be 1 if not supplied (the typical case).
When control Tirst reaches the DO statement,
start-expr is evaluated and is assigned to index.
Then index is compared to siop-expr: if index
¢xceeds stop-¢xpr, control goes to the statement
following the DO bleck, otherwise the block is
executed. At the end of rhe block, the resule of
step-expr is added to index, and it is compared 10

stop-expr again, etc. {The iterative DO js guile
flexible—this is a simplified explanation.)
[terative DOs are handy for ““stepping through™
an array. For example, an array of 10 elements
could be zeroed by:

DO1=0TOY;
ARRAY(l)=0;
END;

In a DO WHILE (figures 2-52 and 2-54), the
statements are executed repeatediy as long as the
expression  following WHILE evaluates 1o
“true.” DO WHILE often can be applied in
situations where an interative DO will not work,
or is clumsy, such as where repetition must be
controlled by a non-integer value. [.jke an
iterative DO, DO WHILE may be executed from
0 times to an infinite number of times.

I*ITERATWE DO/

DOI=0TOS5;
ARRAY (=1,
TOTAL =TOTAL+1;
END;

*1=6 ATTHIS POINT*!

*DOWHILE" /

MORE =0; SPACE__OK =1;
DO WHILE (MORE AND SPACE OK);

ITEMS = ITEMS +1;
N__TRACKS =
M_TRACKS + 10;

IF N_TRACKS >—999
THEN SPACE _OK =0,

END;

{*DO WHILE "/
CODE = ‘A",
DO WHILE (CODE = "A’);

TEMP = TEMP * STEP;

IFTEMP >986

THEN CODE = 'B’;
N_STEPS =N_STEPS + 1;

END;

{*EXECUTED 6 TIMES"{
{*EXECUTED 6 TIMES*f

{*SKIPPED"{

{*SKIPFED" !
/*SKIPPED* ¢

*EXECUTION STOPS™{
I*AFTER TEMP*/
/*EXGEEDS 98.6"/

Figure 2-32, PL/M-86 Lierative DO and DO WHILE

2-80
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D

L

INDEX*-START

EXECUTE
BLOCK

Y

INDEX - INDEX + STEP

]
—

STATEMENT
FOLLOWING
END

Figure 2-53, PL/M-86 Iterative DO Flowchart

A GOTO written in the form
GOTO target;

causes an uncondilional transfer (branch) 1o
another statement in the program. The statcment
receiving control would be written

target: statement;

where  ““larget’” is a label

statement.

identifying the

A CALL statement written in the [orm

CALL proc-name (parm-list};

EXPRESSION

EXECUTE
BLOCK

]

——

STATEMENT
FOLLOWING
END

Figure 2-54, PL/M-86 DO WHILE Flowchart

activates a procedure defined earlier in the pro-
gram. The variables listed in “‘parm-list’’ are
passed to the procedure, the procedure is
executed, and then control returns to the state-
ment following the CALL. Thus, unlike a GOTO,
a CALL brings controt back to the point of
departure.

Procedures

Procedures arc “‘subprograms®’ that make it
possible to simplify the design of complex pro-
grams and wo share a single copy of a routine
among programs. A procedure usually is designed
to perform one function; i.e., to solve one part of
the wolal problem with which the program is deal-
ing. For example, a program 10 calculatc
paychecks could be broken down into separate
procedures lor calculating gross pay, income Lax,
Social Security and net pay. The organization of
the **'main™ program then could be understood at
a glance:

CALL GROSS__PAY;

CALL INGOME__TAX;
CALL SOCIAL_SECURITY;
CALL NET_PAY;

Ot
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Furthermore, the income tax procedure conld be
divided imto separate procedures for calculating
state and federal taxes. Procedures, then, provide
a mechanism by which a large, complex problem
can be attacked with a “divide and conguer”
strategy.

A procedure uswally is defined early in a program,
but it is only executed when it is referred to by
name in a later PL/M-86 statement. A procedure
can aceept a list of variables, called parameters,
that it will use in performing its function. These
parameters may assume different values each time
the procedure is excouted.

PL/M-86 provides two classes of procedures,
typed and untyped. A typed procedure returns a
value to the statement that activates i1 and, in
addition, may accept parameiers from that siate-
ment. A typed procedure is activated whenever its
narmme appears in a statement; the value it returns
effectively takes the place of the procedure name
in the statement. Typed procedures can be used in
all kinds of PL/M-86 expressions. Untyped pro-
cedures may accept parameters, but do not return

a value, Untyped procedures are activated by
CALL statements. Figure 2-55 shows how simple
typed and untyped procedures may be declared
and then activated.

The statements forming the body of a procedure
need not exist within the module that activates the
procedure. The activating module can declare the
procedurc EXTERNAL, and the LINK-86 utility
will connect the two modules.

PL/M-86 procedures can be written 1o handle
interrupts. Procedures also may be declared
REENTRANT, making them concurrently usable
by different tasks in a muititasking system.
PL/M-86 also has about 50 procedures built into
the language, including facilities for:

* converting variables from one type to another
* shifting and rotating bits

* performing input and outpul

* manipulating strings

® activating the CPU LOCK signal.

{*DECLARATION OF A TYPED PROCEDURE THAT
ACCEPTS TWO REAL PARAMETERS AND RETURNS A REAL VALUE*/

AVG: PROCEDURE (X,Y)REAL;
DECLARE {X,Y} REAL;
RETURN (X+Y)/2.0;

END AVG;

{*AGTIVATING A TYPED PROCEDURE"

LOW = 2.0;
HIGH = 3.0:

TOTAL =TOTAL + AVG (LOW HIGH); {"2.51S ADDED TO TOTAL*/

{*DECLARATION OF AN UNTYPED PROCEDURE

THAT ACCEPTS ONE PARAMETER" ¢/

TEST: PROCEDURE (X);
DECLARE X BYTE;
IF X =0HTHEN
COUNT = COUNT +1;
END TEST;

{*AGTIVATING AN UNTYPED PROCEDURE"* /
CALL TEST (ALPHA); /*COUNT IS INCREMENTED

IF ALPHA =0

Figure 2-35. PL/M-86 Procedures
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ASM-86

Programmers who are familiar with the CPU
architecture can obtain complete access to all pro-
cessor facilities with ASM-86. Since the execution
unit on both the 8086 and the 8088 is identical,
both processors use the same assembly language,
Examples of processor features not accessible
through PL/M-86 that can be utilized in ASM-86
programs include: software interrupts, the WAIT
and ESC instructions and explicit control of the
segment registers.

An ASM-86 program often can be written to
execute faster and/or to use less memory than the
same program written in PL/M-86. This is
because the compiler has a limited “knowledge”
of the entire program and must generaie a
generalized set of machine instructions that will
work in all situations, but may not be optimalin a
particular situation. For example, assume that the
elements of an array are to be summed and ihe
result placed in a wvariable in memory. The
machine instructions generated by the PL/M-36
compiler would move the next array element to a
register and then add the register to the sum
variable in memory. An ASM-86 programmer,
knowing that a register will be ‘*safe’ while the
array is summed, could instead add allt the array
elements (0 a register and then move the register
to the sum variable, saving one instruction execu-
tion per array element,

It is easicr to write assembly language programs in
ASM-86 than it is in many assembly languages.
ASM-86¢ contains powerful data structuring
facilities that are usually found only in high-level

languages. ASM-86 also simplifies the program-
mer’s **view* of the 8B086/8088 machine instruc-
tion set. For example, although there are 2% dif-
ferent types of MOV machine instructions, the
prograinmer always writes a single form of the
instruction:

MOV destination-operand, source-operand

The assembler generates the correct machine-
instruction form based on the attributes of the
source and destination operands (atiributes are
covered later in this section). Finally, the ASM-86
assembler performs extensive checks on the con-
sistency of operand definition versus operand use
in instructions, catching many commeon types of
clerical errors.

Statements

Compared to many assemblers, ASM-86 acceptsa
relaxed statement format (see figure 2-56). This
helps to reduce clerical errors and allows pro-
grammers to format their programs for better
readability. Variable and label names may be up
to 31 characters long and are not restricted 1o
alphabetic and numeric characters. [n particular,
the underscore (__) may be used to improve the
readability of long names. Blanks may be inserted
freely between identifiers (there are no *“column’’
requirements), and statements also may span
multiple lines.

All ASM-86 statements are classified as instruc-
tions or directives. A clear distinction must be
made here between ASM-86 instructions and

; THIS STATEMENT CONTAINS A COMMENT ONLY

MOV  AX, [BX+3]

MOV AX, [BX+3)
MOV  AX,
& [BX + 3]

ZERO EQU 0
CUR_PROJ EQU

PROJECT [BX] [S1]

: TYPICAL ASM-86 INSTRUCTION
; BLANKS NOT SIGNIFICANT

; CONTINUED STATEMENTS

+ SIMPLE ASM-86 DIRECTIVE
 MORE COMPLEX DIRECTIVE

THE__STACK__STARTS_HERE SEGMENT :LONG IDENTIFIER

TIGHT_LOOF: JMP TIGHT_LOOP

MOV ES: DATA_STRING {51], AL

WAIT: LOCKXCHG AX,SEMAPHORE

i LABELLED STATEMENT
; SEGMENT OVERRIDE PREFIX
i LABEL & LOCK PREF!X

Figure 2-56. ASM-86 Statements

Meamanics o ntsl 1078
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8086/8088 machine instructions. The assembler
generates machine instructions from ASM-86
instructions written by a programmer. Each
ASM-86 instruction produces one machine
instruction, but the form of the generated
machine instruction will vary according to the
operands writien in the ASM-86 instruction. For
example, writing

MOV BL,1

preduces a byte-immediate-to-register MOV,
while writing

MOV TERMINAL__NO,BX

produces a word-register-to-memory MOV, To
the programmer, though, there is simply a MOV
source-to-destination instruction.

ASM-86 instructions are written in the form:
{label:) {prefix) mnemanic (operandis) {;comment)

where parentheses denote optional fields {the
parentheses are not actually written by program-
mers). The label field names the storage location
containing the machine instruction so that it can
be referred to symbolically as the target of a JMP
instruction efsewhere in the program. Writing a
prefix causes ASM-86 10 genecrate one of the
special prefix bytes (segment override, bus lock or
repeat) immediately preceding the machine
instruction. The mnemonic identifies the type of
instruction (MOV for move, ADD for add, etc.)
that is to be generated. Zero, one or two operands
may be written next, separated by commas,
according to the requirements of ihe instruction.
Finally, writing a semicolon signifies that what
foltows is a comment. Comments do not affect
the execution of a program, but they can greatly

improve its clarity; all good ASM-36 programs
are thoughtfully commented.

Writing a directive gives ASM-86 information to
use in generating instructions, but does not jtself
produce 2 machine instruction. About 20 gif-
ferent directives are available in ASM-86. Drirec-
tives are written like this:

{(name} mnemonic (operand(s)) {,comment)

Some directives require a name to be present,
while others prohibit a name. ASM-86 TECOENizes
the directive from the mnemonic keyword written
in the next field. Any operands required by the
directive are written next, separated by commas.
A comment may be written as the last field of a
directive.

Some of the more commonly used directives
define procedures (PROC), allocate storage for
variables (DB, DW, DD) give a descriptive name
to a number or an expression (EQU), define the
bounds of segments (SEGMENT and ENDS},
and force instructions and data to be aligned at
word boundaries (EVEN).

Constants

Binary, decimal, octal and hexadecimal numeric
constants (see figure 2-57) may be written in
ASM-86 statements; the assembler can perform
basic arithmetic operations on these as well. All
numbers must, however, be integers and must be
representable in 16 birs including a sign bir.
Negative numbers are assembled in standard
two's complement notation.

Character constants are enclosed in singlc quotes
and may be up o 255 characters long when used

MoV STRING [81], 'A! i CHARACTER

MOV STRING [SI], 41H TEQUIVALENT IN HEX

ADD AX,0C4H T HEX CONSTANT MUST START WITH NUMERAL
OCTAL _8 EQU 100 ; OCTAL

QCTAL_9 EQU 10Q T OCTAL ALTERNATE

ALL__ONES EQYU 11111111B ; BINARY

MINUS & EQU -5 ; DECIMAL

MINUS 8 EQU -6D ; DECIMAL ALTERNATE

Figure 2-37. ASM-86 Constants

Mnemonics ¥ Intal, 1978
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1o inilialize storage. When used as immediate
operands, character constants may be one or two
bvtes long to match the length of the destination
operand.

Defining Data

Most ASM-86 programs begin by defining the
variables with which they will work. Three direc-
tives, DB, DW and DD, are used to allocate and
name data storage locations in ASM-86 (see
figure 2-58). The directives are used to define
storage in three different wunits: DB means
“define byte,” DW means “‘define word,”” and
DD means ‘‘define doubleword.” The operands
of these directives tell the assembler how many
storage units (o allocate and what initial values, if
any, with which to fill the locations.

A SEG SEGMENT

ALFHA 06 ? SNOT INITHALIZED

BETA ow ? JNOT INITHALIZED

GAMMA oD ? THOT INITIALIZED

DELTA 0e ? THOT INITIALIZED

EPSILON DW 5 JCONTAINS 05H

A SEG ENDS

B_SEG SEGMENT AT 55H ; SPECIFYING BASE ADDRESS
10TA oe “HELLO" ;GONTAING 4645 4CAC aF H
KAPFA oW ‘ARt .CONTNNS aza1 H

LAMBDA LD B SEG
MU DB 100 CUP O
B _5EG END3

s CONTAINS 0000 5500 H
; CONTAINS {100 X) 00H

ATTRIBUTES QPERATORS

VARIABLE | SEGMENT [ OFFSET | TYPE | LENGTH | SiZE
ALPHA & SEG 0 1 1 1
BETA A SEG 1 2 1 2
CAMMA A SEG 3 4 1 [
DELTA A SEG 7 1 1 1
EPSILON A ZEG B 2 1 2
10TA 8 _SEG 0 1 5 5
KAPPA B _5EG 5 2 1 2
LAMEDA B SEG 7 4 1 4

B_SEG " 1 100 100

Figure 2-58. ASM-86 Data Definitions

For every variable in an ASM-86 program, the
assembler keeps track of three attributes: seg-
ment, offset and typc. Scgment identifies the seg-
ment that contains the variable (segment control
is covered shortly). Offset is the distance in bytes
of the variable from the beginning of its contain-

ing segment. Type identifies the variable’s alloca-
tion unit {1 = byte, 2 = word, 4 = doubleword).
When a variable is referenced in an instruction,
ASM-86 uses these attributes 1o determine what
form of the instruction to generate. If the
variable’s artributes conflict with its usage in an
instruction, ASM-86 produces an error message.
For example, attempting to add a variable defined
as a word to a byte register is an error. There are
cascs where the assembler must be explicitly told
an operand’s type. For example, writing MOVE
{BX],5 will produce an error message because the
assembler does not know if [BX] refers to a byte,
a word or a doubleword. The following operators
can be used to provide this information: BYTE
PTR, WORD PTR and DWORD PTR. I[n the
previous example, a word could be moved to the
location referenced by [BX] by writing MOVE
WORD PTR [BX],S.

ASM-86 also provides 1wo built-in operators,
LENGTH and SIZE, that can be written in
ASM-86 insiructions along with attribute
information. LENGTH causes the assembler io
return the number of storage units (bytes, words
or doublewords) occupied by an array. SIZE
causes ASM-86 to return the total number of
byies occupied by a variable or an array. These
operators and attributes make it possible ta write
generalized instruction sequences that need not be
changed (only reassembled) if the attributes of the
variables change {(.g., a byte array is changed to a
word array). See ligure 2-39 for an example of
using the attributes and attribute operators.

Records

ASM-86 provides a means of symbolically defin-
ing individual bits and strings of bits within a byte
or a word. Such a definition is called a record,
and each named bit string {which may consist of a
single bit) in a record is called a ficld. Records
promote efficient use of storage while at the same
time improving the readability of the program
and reducing the likelihood of clerical errors.
Defining a record does not allocate storage:
rather, a record is a template that tells the
assembler the name and location of each bit field
within the byte or word. When a field name is
written later in an instruction, ASM-86 uses the
record to generate an immediate mask for instruc-
tions like TEST, AND, OR, etc., or an immediate
count for shifts and rotates. See figure 2-60 for an
example of using a record.
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; SUM THE CONTENTS OF TABLE INTO AX

TABLE Dw 50 DUP(?)
: NOTE SAME INSTRUCTIONS WOULD WORK FOR
; TABLE DB 25 DUP(?)
:TABLE Dw 118 DUP(?), ETC.
sug AX AX ; CLEARSUM

MOV CX, LENGTH TABLE ; LOOP TERMINATOR
MOV S|, SIZE TABLE ;PQINT SUBSCRIPT

; TOENDOF TABLE
ADC_NEXT: SuB SI, TYPE TABLE ; BACK UP ONE ELEMENT
ADD AX, TABLE [sI] » ADD ELEMENT

LOOP  ADD__NEXT S UNTILCX =0
: AX CONTAINS SUM :

Figure 2-59. Using ASM-86 Attributes and Attribute Qperators

EMP_BYTE DB ? 1 1BYTE, UNINITIALIZED
; BIT DEFINITIONS:
; 72 YEARS EMPLOYED

1 SSEX{(1=FEMALE)
0 (STATUS (1=EXEMPT)

EMP_BITSRECORD ;RECCRD DEFINED HERE
& YRS_EMP : 6,

& SEX 1,

& STATUS 1

E SELECT NONEXEMPT FEMALES EMPLOYED 10+ YEARS

MOV AL, EMP_BYTE i KEEP ORIGINAL INTACT
TEST AL, MASK SEX s FEMALE ?

JZ REJECT rNO, QUITE

TEST AL, MASK STATUS ; NONEXEMPT?

JNZ REJECT iNO, QUIT

SHA AL, CL ; ISOLATE YEARS

CMP AL, 11 i >=10 YEARS?

JL REJECT s NO, QuIT

: PROCESS SELECTED EMPLOYEE
REJECT: ; PROCESS REJECTED EMPLOYEE

. ; RECORD USED HERE
MOV CL, YRS_EMP : GET SHIFT COUNT

Figure 2-60. Using an ASM-86 RECORD Definition

Mnemanics 2 Intel, 1978 2.86
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Structures

An ASM-B6é structure is a map, or template, that
gives names and attributes (length, type, €ic.) 102
collection of fields. Each field in a structure is
defined uwsing DB, DW and DD directives;
however, no storage is allocated to the structure,
Instead, the structure becomes associated with a
particular area of memory when a field name is
referenced in an instruction along with a base
value. The base value ““locates’’ the structure; it
may be a variable name or a base register (BX or
BF). The structure may be associated with
another area of memory by specifying a different
base value, Figure 2-61 shows how a simple strue-
ture may be defined and used. Note that a struc-
ture field may itself be a structure, allowing much
more complex organizations to be laid ount.

Structures are particularly useful in situations
where the same storage format is at multiple loca-
tions, where the location of a collection of
variables is not known at assembly-time, and
where the lecation of a collection of variables
changes during execution. Applications include
multiple buffers for a single file, list processing
and stack addressing.

Addressing Modes

Figure 2-62 provides sample ASM-86 coding for
each of the X0RA/80D88 addressing modes. The
assembler inlerprets a brackeied reference to BX,
BP, S1 or DI as a base or index register to be used
to construct the effective address of a memory
operand. An unbracketed reference means the
register itself is the operand.

The following cases illustrate typical ASM-86
coding for accessing arravs and structures, and
show which addressing meode the assembler
specifies in the machine instruction it generaies:

+ If ALPHA is an array, then ALPHA [SI} is
the element indexed by SI, and ALPHA
[S1 + 1] is the following byte (indexed).

« JFf ALPHA is the base address of a structure
and BETA is a field in the structure, then
ALPHA.BETA sclects the BETA ficld
{direct).

*  If register BX contains the base address of a
structure and BETA is a field in the strue-
ture, then [BX].BETA refers to the BETA
field (based).

EMPLOYEE STRUC
SSN DB ¢
RATE DB 1
DEPT ow 1
YR_HIRED DB 1
EMPLOYEE ENDS

MASTER b 12

TXN DB 12

DUP(?)
DUP{?)
DUP{?}
DUP{?)

DUP{?}
DUP!?)

; CHANGE RATE IN MASTER TO VALUE IN TXN.
AL, TXN.RATE
MASTER:RATE, AL

MOV
MOV

: ASSUME BX POINTS TO AN AREA CONTAINING
; DATA INTHE SAME FORMAT AS THE EMPLOYEE
; STRUCTURE. ZERO THE SECOND DIGIT

OF SSN
MOV
MOV

31,1

; INDEX VALUE OF 2ND DIGIT

[BX].8SN[SI],0

Figure 2-61, Using an ASM-86 Structure

3drmrnire S Indes] A0TE
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ADD  AX, BX
ADD  AL.§

ADD  CX, ALPHA

ADD  ALPHA, ¢

ADD  ALPHA, DX

ADD  BL,[BX)

ADD  (SI], BH

ADD  [PPL.ALPHA, AH
ADD  CX, ALPHA [5)
ADD  ALPHA [DIH2], 10
ADD  [BX).ALPHA [SI], AL
ADD  SJ, [BP+4](DI]

iN AL, 30

OUT DX, AX

: REGISTER ~ REGISTER

 REGISTER < IMMEDIATE

: REGISTER - MEMCRY (DIRECT)

: MEMORY (DIRECT) — IMMEDIATE

; MEMORY (DIRECT) +~ REGISTER

i REGISTER — MEMORY (REGISTER INDIRECT)
: MEMORY (REGISTER IN DIRECT) — IMMEDIATE
i MEMORY (BASED) < REGISTER

 REGISTER - MEMORY (INDEXED)

i MEMORY (INDEXED) « IMMEDIATE

i MEMORY (BASED INDEXED) < REGISTER

: REGISTER < MEMORY (BASED INDEXED)
 DIRECT PORT

; INDIRECT PORT

Figure 2-62, ASM-86 Addressing Mode Exampies

* I register BX contains the address of an
array, then [BX] (S)] refers to the element
indexed by ST (based indexed).

¢ If register BX points to a structure whose
ALPHA field jis an array, then [BX)
-ALPHA [SI] selects the element indexed by
Si (based indexed),

¢ If register BX points to a structure whose
ALPHA field is itself a structure, then
(BXLALPHA.BETA refers to the BETA
field of the ALPHA substructure {basad).

* I register BX points to a structure and Lhe
ALPHA field of the struct ure is an array and
each element of ALPHA is a structure, then
[BX].ALPHA([SI + 3].BETA refers to the
field BETA in (he clement of AIPHA
indexed by [Si + 3] (based indexed),

Note that DI may be used in place of S1 in these
cases and that BP may be subsiituted for BX.
Without a segment override prefix, expressions
containing BP refer to the current stack segment,
and expressions containing BX refer (0 the cur-
rent data segment.

Segment Control

AN ASM-86 program is organized inte a series of
named segments. These are “logical” scgments;
they are eveniually mapped into 8086./8088
Memory segments, but this usually is not done
until the program is located. A SEGMENT direc-
tive starts a segment, and an ENDS directive ends
the segment (see figure 2-63). All data and

instructions written between SEGMENT and
ENDS are part of the named segment. !n small
programs, variables often are defined in one or
two segment(s), siack space is allocated in another
segment, and instructions are written in a third or
fourth segment. It is perfectly possible, however,
to write 4 complete program in one segment; if
this is done, all the segment registers will contain
the same base address: chat is, the memory
segments will completely overlap. Large pro-
grams may be divided into dozens of segments.

The first instructions in a program usually
establish the correspondence between segment
names and segment registers, and then load each
segment register with the base address of its cor-
responding segment. The ASSUME directive tells
the assembler what addresses wiil be in the seg-
Menl registers at execution time. The assembler
checks each memory instruction operand, derer-
mines which scgment it is in and which segment
regisier contains the address of that segment. [f
the assumed register is the register expected by the
hardware for that instruction type, then the
assembler generates the machine instruction nor-
mally, If, however, the hardware expects one seg-
ment register 1o be used, and the operand is nos in
the segment pointed to by that register, then the
assembler auvtomatically precedes the machine
instruction with a s¢gment override prefix byte.
(If the segment cannot be overridden, 1he
assembler produces an error message.} An exam-
ple may clarify this. If register BP is used in an
instruction, the 8084 and 8088 CPUs expect, as a
default, thai the memory operand will be located
in the segment pointed o by SS—in the current

Mremonics s intel, 1978
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DATA_SEG SEGMENT
; DATA DEFINITIONS GO HERE
DATA__SEG ENDS

STACK_SEG SEGMENT
: ALLOCATE 100 WORDS FOR A STACK AND
;  LABEL THE INITIAL TOS FOR LOADING SP.
DW 100 DUP(?)
STACK TOP LABEL WORD
STACK_SEG  ENDS

CODE_SEG SEGMENT
; GIVE ASSEMBLER INITIAL REGISTER-TO-SEGMENT
: CORRESPONDENCE.NOTE THAT IN THIS
; PROGRAM THE EXTRA SEGMENT INITIALLY
v OVERLAPS THE DATA SEGMENT ENTIRELY.
ASSUME CS: CODE__SEG,

D5: DATA_SEG,
& ES: DATA__SEG,
& $3: S8TAGK _SEG

START: ;THIS IS THE BEGINNING OF THE PROGRAM.
; LOC-86 WILL PLACE A JMP TO THIS
1 LOCATION AT ADDRESS FFFFOH.

LOAD THE SEGMENT REGISTERS. CS DOES NOT
»  HAVE TO BE LOADED BECAUSE SYSTEM
;  RESETSETSIT TOFFFFH, AND THE
;. LONG JMPINSTRUCTION AT THAT ADDRESS
:  UPDATESIT TOTHE ADDRESS OF CODE_SEG.
i SEGMENT REGISTERS ARE LOADED FROM AX
i BECAUSE THERE IS NO IMMEDIATE-TO-
:  SEGMENT__REGISTER FORM OF THE MOY
i INSTRUCTION.

MOV  AX, DATA__SEG
MOV DS, AX

MOV ES. AX

MOV  AX, STACK_SEG
MOV S8, AX

i SETSTACK POINTER TQ INITIAL TOS.
MOV  SP, OFFSET STACK_TOP

; SEGMENTS ARE NOW ADDRESSABLE.
; MAIN PROGRAM CODE GOES HERE.
CODE_SEG ENDS

i NEXTSTATEMENT ENDS ASSEMBLY AND TELLS
. LOC-86 THE PROGRAMS STARTING ADDRESS.

END START

Figure 2-63. Setting Up ASM-86 Segments

MRaamonise
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stack segment. A programmer may, however,
choose to use BP to address a variable in the cur-
rent data segment—the segment pointed to by
DS. The ASSUME directive enables the assembler
to detect this situation and to automatically
generaie the needed override prefix.

It also is possible for a programmer to explicitly
code segment override prefixes rather than relying
on the assembler. This may result in a somewhat
better-documented program since aitention is
called to the override. The disadvantage of
explicit segment overrides is that the assembler
does not check whether the operand is in fact
addressable through the overriding segment
register.

ASM-86, in conjunction with the relocation and
linkage facilities, provides much more
sophisticated segment handling capabilities than
have been described in this introduction. For
example, different logical segments may be ¢om-
bined into the same physical segment, and
Segments may be assigned the same physical loca-
tions (allowing a “‘common’ area 10 be accessed
by different programs using different variable
and label names).

Procedures

Procedures may be written in ASM-86 as well as
in PL/M-86. In fact, procedures written in one
language are callable from the other, provided
that a few simple conventions are observed in the
AS5M-86 program. The purpose of ASM-86 pro-
cedures is the same as in PL/M-86- to simplify the
design of complex programs and to make a single
<opy of a commonly-used rontine accessible from
anywhere in the program.

An ASM-86 program activates a procedure with a
CALL instruction. The procedure terminates with
a RET instruction, which transfers control to the
instruction following the CALL. Parameters may
be passed in registers or pushed onto the stack
before calling the procedure. The RET instruction
can discard stack parameters hefore returning to
the caller.

Unlike PL/M-86 procedures, ASM-86 procedures
are executable where they are coded, as well as by
a CALL instruction. Therefore, ASM-86 pro-
cedures often are defined following the main pro-
gram logic, rather than preceding it as in

PL/M-86. Figure 2-64 shows how procedures
may be defined and called in ASM-86. Section
2-10 conlains examples of procedures that accept
parameters on the stack.

LINK-86

Fundamentally, LINK-86 combines separate
relocatable object modules into a single program.
This process consists primarily of combining
(logical) segments of the same name into single
segments, adjusting relative addresses when
segments are combined, and resolving external
references,

A programmer can use a procedure that is actual-
ly contained in another module by naming the
procedure in an ASM-86 EXTRN directive, or
declaring the procedure to be EXTERNAL in
PL/M-86. The procedure is defined or declared
PUBLIC in the module where it actually resides,
meaning that it can be used by other modules.
When LINK-86 encounters such an external
reference, it scarches through ihe other modules
in its input, trying to find the matching PUBLIC
declaration, If it finds the referenced object, it
links it to the reference, “‘satisfying*’ the external
reference. If it cannot satisfy the reference,
LINK-86 prints a diagnostic message. LINK-36
also checks PL/M-86 procedure calls and func-
tion referenices 1o insure that the parameters
passed to a procedure are the type ex pected by the
procedure.

LINK-86 gives the programmer, particularly the
ASM-86 programmer, great  conirol  over
segments {(segments may be combined end to end,
renamed, assigned the same locations, ete.).
LINK-86 also produces a map that summarizes
the link process and lists any unusual conditions
encounicred, While the output of LINK-86 is
generally input to LOC-86, it also may again be
input to LINK-86 to permit modules to be linked
in incremental groups.

LOC-86

LOC-86 accepts the single relocarable object
module produced by LINK-86 and binds the
memory references in the module to actual
memory addresses. Its output is an absolute
object module ready for loading into the memory
of an execution vehicle. LOC-86 also inserts a

Mnemanics © Intel, 1978
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FREQUENCY DB 256 DUP {0}

USART_DATA  EQU  OFFOH . DATA PORT ADDRESS

USART_STAT EQU  OFF2H . STATUS PORT ADDRESS
NEXT: CALL CHAR_IN

CALL COUNT_IT

JMP  NEXT
CHAR_IN PROC

: THIS PROCEDURE DOES NOT TAKE PARAMETERS.
; ITSAMPLES THE USART STATUS PORT
;  UNTILACHARACTER IS READY, AND
;  THEN READS THECHARACTER INTO AL
MOV DX, USART_STAT

AGAIN: IN AL, DX :READ STATUS

AND AL,2 - CHARACTER PRESENT?
Jz AGAIN :NO, TRY AGAIN
MOV DX, USART_DATA
IN AL, DX ; YES, READ CHARACTER
RET

CHAR_IN ENDP

COUNT_IT PROC

; THIS PROCEDURE EXPECTS A CHARACTER IN AL.
;  ITINCREMENTS ACOUNTER IN A FREQUENCY
TABLE BASED ON THE BINARY VALUE OF

THE GHARACTER.
XOR  AH,AH ; CLEAR HIGH BYTE
MOV SI,AL ;INDEX INTO TABLE
INC FREQUENCY [5}); BUMP THE COUNTER
RET
COUNT_IT ENDP

Figure 2-64. ASM-86 Procedures

direct intersegment JMP instruction at location
FFFFOH. The target of the JMP instruction is the
logical beginning of the program. When the 8086
or BOBS is reset, this instruction is automatically
exceuted 1o restart the system. LOC-86 produces
a memory map of the absolute object module and
a table showing the address of every symbol
defined in the program.

LIB-86
LJB-86 is a valuable adjunct to the R & L pro-

grams. It is used to maintain relocatable object
modules in special files called libraries. Libraries

are a convenieni way to make collections of
modules available to LINK-86. When a module
being linked refers to “‘external’” data or instrug-
tions, LINK-86 can automatically search a series
of libraries, find the referenced module, and
include it in the program being created.

OH-86

OH-86 converts an absolute object module into
Intel’s standard hexadecimal formalt. This format
is used by some PROM programmers and system
loaders, such as the iSBC 957™ and SDK-86
loaders.

Maemonics « Inlel. 1978
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CONV-8s

Users who have developed substantial, Tully-
tested assembly language programs for the
3080/8085 microprocessors may want to uge
CONY-86 10 automatically convert large amoungs
of this code into ASM-86 source code (see figure
2-65). CONV.86 accepts an ASM-80 source pro-
gram as input and produces ap ASM-36 source
Program as output, plus a print file that
documents the conversion and lists any diagnostic
messages,

Some programs cannot be completely converted
by CONV-86. Exceptions include:

*  seif-moditying code,

¢ software timing loops,

*  B085 RIM and SIM instructions,
*  interrupi code, and

*  macros,

By using the diagnostic messages produced by
CONV-86, the converted ASM-86 source file can
be munually edited to ¢lean up any sections not
converted, A converted program s typically
10-20% larger than the ASM-80 version and does
not iake full advantage of the 8086/8088 archirec-
ture. Howcver, the development time saved by
using CONV.36 can make it an attractive alter-
native 1o rewriting working programs from
scratch,

Sample Programs

Figures 2-66 and 2.67 show how g simple program
might be written in PL/M-86 and ASM_ 8. The
program simulates a pair of rolling dice and
execules on an Intel SDK-84 System Design Kit.
The SDK-86 is ap 8086-based computer with
memory, parailel and serial 1/0 ports, a keypad
and a display. The SDK-86 is implemented on a
single PC board which includes a large protoiype
area for system expansion and experimeniation.
A ROM-based monitor program provides a user
interface to the system; commands are entered
through the keypad and monitor responses are
writicn on (he display. With the addition of
cable and software interface (called SDK-C86),
(he SDK-86 may be connected 10 an Intellec®
Microcomputer Development System. In this
mode, the user enters monitor commands from
the Intellec keyboard and receives replies on the
Intellee CRT display.

ASM-g0

SQURCE
PROGRAM
CONV.86
ASM-BE -\
MAGNOSTICS SOURCE & — o --.( EDNT )
ROGRAM
| S )
L EDITER
——— —{ AsMss
SOuRCE |
\eRoamAu,
ASM-§6
ASSEMBLER

Figure 2-65. ASM-80/ASM-86 Conversion

The dice Program runs on an SDK-86 that is con-
necied to an Inteljiec® Microcomputer Develop-
ment System. The program displays iwo con-

tinuously changing digits in the upper left corner

eniering a monilor
INTR key on the SDK-86 keypad stops the roll.

There are iwo procedures in the PL/M-86 version
of the dice program. The first is called CO for
console output. This is an untyped PUBLIC pro-
cedure that is supplied on an SDK-C84 diskette.
CO is written in PL/M-86 ang outputs one
character 10 the Intellec console, Iy js declared
EXTERNAL in the dice program because it exisis
in another module, LINK-86 searches the
SDK-C8s library for CO and includes it in the
single relocatable object module it bujlds.

RANDOM is an internal typed procedure; it is
contained in the dice module and returns a word
value that is a random humber between | and 6.
RANDOM does not use

activated in the parameter list passed to CO.
When CO is calied like this, firsi RANDOM is ac-
tivated, then 30 i added to the number it returns
and the sum is passed to CO.

Mnamonfcs 7+ Inial, 1978
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PL/M-#6 COMFILER DICE

TRIS-TY FL/M-BE V1.2 COMPTLATICH OF MOLLULE RTCE

ABJECT MODULE PLACER TN :F1:DICE OBJ
COMPILEX INVOKED BY: PLMBS :F1:BICE.F86 XRFF
1 DICE:  Ly;
/€ THIS PRCGRAM SIMULATES THE HOLL OF A FALR OF LICE */
/¥ GIVE MAKES TO CONSTANTS */
2 DECLARE CLEAXR$CRTI LITERALLY "QIBH'; /% INTELLEC #/
i1 DECLARE CLEAR4CRTZ LITERALLY *OHEH'; /¥ CET "
i DECLARE HIME$CURSORY LITERALLY "QTBH'; /¢ CCNTROL */
5 DECLARE HOFE$CURSDEZ LITERALLY 'OUEH'; /% CCDES *y
£ 1 GECLARE SPACF LITERALLY *D20H*; /¥ESCIT BLANK*/
% PROGEAW UAKTRBLES A/
T DECLARE { RAWDOMSHUMEER , SAVE}  WORD;
/% CONSOLZ OUTPUT FRICEDURE */
a 1 Cd: PROCECURE(Y} EXTERWAL;
v 2 DECLA&RE X BYTE;
1z END ©G;
/% HANDOM NUMEBER GEWERATOR PREGCEZDURE i
/% ALGORITRM FOR 16-3IT RANDOK NUMBEE FAGM: “
i " OGULDE T FLAR PEULUKAMMLING FUOR a
s MICKOUUMPUTER RPPLIGATIONS, - Y
i DAWIEL O. MCCRACKEN, wr
i* AGDISON-WESLEY, 1978 £/
1M RANDOM: PROCEDURE WORD:
1z 2 RANDUMNUMEER = SAVE; FASTART WITH OLD NJMBERE®/
i3z FANDOMENUMBER = 2053 % RANCOMSHUMBER + 13849;
TR SAVE = RANDOMSMUMBER, JNSAVE FCR NEXT TIMES/
SHFORCE 16-BIT KUMBERK INTO RANGE 1-863/
15 2 RaWDOMSHUMEER = RAWDOMEAUMEER MOD &+ 1
18 2 RETUEM RANDOMSNUM3ER;
17 2 END KANLOH ;
4 MAIN ROUTINE #/
/% CLEAR THE SCREEK®/
| CALL CO(CLEAA$CRTI};
iz 1 CALL CO(CLEAR$CRTZ};
/% ROLL THE 2IGE UNTIL LNTERRUFTED */
FIP R Ul WHIEE 15  /%'DQ SQREVER™®/
FYNOTE THAT ALDING 30 TO THE EIE VALUE */
/% CONVERTS IT T ASCLI. L
21 2 CALL COLRANDOM + 030H): /15T DIE#/¢
22 2 CALL CO(SPACE): F#BLANKS /
3 2 CALL CO{RANDOM + 030H): /N2ND DIE®/
/% HOME THE CURSOR %/
2 CM.L COCHOMESCURSORY) ;
w2 CALL COtHOME$CURSOR2):
6 2 END;
27 1 ENE DICE;

CROSS-REFEAENCE LISTING

DEFN ADDR SIZE NWAME, ATTRIEBUTES, AMD EEFERENCES

2 CLEARTRTY LITERALLY
18

3 TLEARZRTZ LTTERALLY
19

& coooH s} PROCEDURE EXTERNALLO)Y STACK=00C0H
18 1 21 22 23

T CO002H 71  DICE PRPCEDURE STACK=0C0OMH

L] HOMECURSGRY LITERALLY
2%

5 HOMECURIORZ LITERALLY
25

11 oQ%9H b4 EANGOM PROCEDLRE WORD STACE=(00:H
a2 23

Figure 2-66. Sampte PL/M-86 Program
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T 0000H 2 RANDOMKUMEER WORD

12 12 Th 15 16
T O0062H 2 EAVE WORD

12 14
6 SFPACE LITERALLY

22
8 oocud LI 4 BYTE PARAMETER

%

MODULE INFORMATION:

CODE ARER 371ZE DOTEH 17

CONSTANT ARER SIZE = 000H o
VARIAELE AREA SIZIE = QOQAH ik
MAXIMUM STACK SIZE = ¢0ouH LY

5t LIKES RE&D
QO PRIGRAM ERRGR(S)

END OF PL/M-86 CONFILATION

Figure 2-66. Sample PL/M-86 Program (Cont’d.)

MC3-B6 MACRD ASSEMBLER RICE

ISI8-T1 KC$-86 MACHD ASSEMBLER W2.0 ASSEMBLY oF MCOULE DICE
OBJECT MODULE PLACEE IN (F1DICE . OB

ASSEMELEE INVOKEL BY: ASHES EET:DICE.A8E XREF

Lo OBJ LINE SCURCE

i THIS PROGRAM SIMULATES THE ROLL OF & PAIR OF DICE

1
2
3 i CONSOLE OUTPUT PROCEDURE
t EXTHN  CO:KELR
s
& 3 OSEGHENT GROWF LEFINITIONS WEEDED Fow PLAM=BE COMPATIBLLITY
7 CURUUE  GRGUF  CORE
8 UGRAVF  GRODF  DATA, ETACK
K
Ll i INFURM ASSEMBLER OF SEGMENT HEGISTE K COWTENTS.
i1 ASRUME CS:CGROUP,DS:DGROUPrSS:DGROUP,ES:NOTHING
iz
13 3 ALLOCATE DATA
.. 14 AT SECMENT PUBLIC rDATA"
5 { NOTE THAT THE FOLLOWING ARE PASSED ON THE 3TACK TCO THE PL/M-Bé
i i PROCEDURE «¢o+ . EY FOHVENTION, A BYTE PARAMETER 15 PASSED In
17 i THE LOW-ORDER E-BITS GF & WORD ON THE STACK. HWENCE, THESE ARE
13 i DEFINEL A5 WORL YALUES, THOUGH THEY OCCUPY 1 BYTE ONLY.
HOo0 1500 1% CLELR CRT1 LW J1BH i INTELLEC
uguz 500 = CLELR” CRYZ W HSH : CRT
PO004 1RGO 21 HOME TURSURI i D1BR i CONTROL
000a 4800 22 HOXETCURSUKZ L GUEN 1 COLES
Uo0E 2000 23 SPACE [l 020H i ASCIT BLANK
COg4A 790 24 SAVE Iy ? i HOLDE LAST 16-BIT RANDOM NUMBER
_—— 25 DATA ENLg
26
27
28 i ALLOCATE STACK RPACE
- 29 STRCK  BEGHMERT STACK  5TaCK:
D000 (20 34 Iy 20 DUF (73
2277
3
31 P LABEL INITIAL TOS: Foa LATER USE,
0324 33 STACK_Top LADEL  WORD
— EE] STACK™ EwCs
4
18
36 ; PROGRAM COLE
R 37 COBE SEGMENT PUBLIC *LODE*
23
40 i BANDOM HUMEEN GENERATOR PROCEDURE
L1 i ALGORITHM FOR 16-31T RANDONM NUMBER EROM:
4z i “A GUIUE T0 PLs/M PROGRAMMING FOR
'k i MICROCOMPUTER APPLICATIONS, »
4 i DARIEL D, WCORACKEN
45 i ADCISONSWESLEY, to7a
2000 Ui FANBOM  PROC
0098 Aitdoo R uy oy KX, BAVE ; MEW NUMBER =

Figure 2-67, ASM-86 Sample Program
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MCS-36 MACED ASSEMBLER pICE
LG GBJ LINE SOURCE
Q003 B0508 ug KOy LK. 2053 H ULl NUMBER * 2053
00G6 FTET 49 KuL 41 : + 13849
0008 051934 a0 A0z A¥, 1iBug
000B AT0AOG R 51 w0y SAVF,AX ; BAVE FUR NEXT TIMF
52 1 FORCE 16£-BIT NUMBER THTO RANGE 1 - 6
53 i BY MCOULG & DIVISION + 1
000E 2BD2 gy sua X, DX ; CLEAR UPPER DIVIDEMD
0010 BHOEGO 55 OV CX,6 ; SET DIVISOR
0013 FTEN 56 LIV o4 ; DIVICE BY &
Q015 gec2 57 HOY A¥, LN ; REMAIMDER TO Ak
0017 4O LT ING AN p BED 1
Q18 ©3 L RET i RESULT IN AX
&0 RANDOM ENDP
61
[-F¢
G i HALK PROGRAR
it
G5 3 LOAL 3EGRENT REGISTERS
66 ; NOTE PROGHAM DCES NOT USE ES; C5 I8 INITIALIZED BY HARDWARE RESET,
6T ; DATA & STACK ARE MEMEERS OF SAME GROUF, 30 ARE TREATED A3 A& ZINILE
6E ; MEKORY SEGMENT POINTED TC EY BOTH DS § 5=,
Q019 BA---- F] bé ETART: MOV AX.DGROUE
001C BEDE 10 MOV LS. AX
GU1E BEDU 71 MY 2%, AX
Te
73 i INITIALIZE STACK POINTER
o0Z0 BC280C ] TU Mav 5P,OFFSET DGROUP:STACK TGP
T4
76 ; CLEAR THE SCREEN
0023 FFIGOC00 R ki PUSH CLEAR_CHTI
0027 EBGOLO z T CALL 4}
0DZA FFI60D200 it 79 PUSH CLEAR C3T2
0DZE ES00DC E 5C caLL co
51
Az ; ROLL THE LIGE UNTL. L¥IERRUPTEL
Q%31 EBCCFF 43 ROLL Y CALL RANLKIM i GEYT 151 LIE IN AL
0034 0430 B4 ADD &L, 03GH ; CONYERT TL ASGII
0036 50 45 FUSH AN o PASS IT T4
0037 ESCODC E g6 CALL o H CUNSCLE QUTPLT
Q03IA FF360800 ft 87 FPUSH SPACE v OUTRUT
Q03E ERCODD E 55 CALL co H A BLAMK
0081 ERECFF 39 CALL R N ; GET ZHL DIE IN AL
aoug ou3d ¢ ADD AL, U3CH  CONVERT T4 ASCII
00ué S0 31 PUSH ax ¢ OPASS TT TE
O0UT FADOGO E [ CALL i ¢ CONSULL QNTEGT
53 ; hOHE THE CURSGH
0044 FF36G400 i 5y PUSH HOME CURSORT
OO4E BR300 E 94 CALL i
0051 FF360600 R 36 PUSH HOME CURSORZ
0055 EZCOcn E 37 CALL oo
38 ; CONTLNUE FOREYVER
Q058 ELET EE] JMEP RZLL
—— 10C COLE ENDS
101
AHEF STMBOL TABLE LISTING
MAME TVFE YALGE ATTRIBUTES, XREFS
PAREL . . . . SEGHENT SIZZ=0000H PAHA PUBLIC
CGRULP, . . . GROUP [l KT £
CLEAN_CRT1. . V WORD  G0OOH DATA 164 77
CLEAN CRT2Z. . ¥ WORD  COO2ZH DATA 204 70
Cla. .. . . . L MEAR CUBoH  EXTAN  =f T8 B0 §e 55 92 6% 07
CODE. . . . . SEGKEWT S1ZE=005AF raRa PLELIC ~CODE:  T# 37 130
DATA. . . . . BEGMENT S1ZE=0QOCE PARA PUBELIC 'LaTh'  Er 14 325
LGRLLUE, . . . URULE CATY STACK  B# 11 11 49 Ta

HOUME CURZOKY. V WORD CODHH  DATA  Z21# 34

HUME CYHSOKRZ . ¥ WORD CooGll DATA 224 9B

RANLTM. . . . L HEAR 0000H  J0DE 46F 03 &3 89
L]

Roll. . . . . HEAR Q031H  CODE B384 99

SAVE. 0 . . Wikl CUOAH  LATA  24¥ 4Y 51

SP8CE . . . . ¥ WUORD OOHEH DATA 234 BT

STACK . . . . SEGMENT SEZE=0026H FARA STALK 'STACK:!
STACK TOPF . . ¥ WOHD 00280 STACK 324 TH

S3TART . . . . L NEAE 00194 CCDE 698 104

ASSEMELY COMPLELIE, MO ERHOR: FOUND

Figure 2-67. ASM-86 Sample Program (Cont’d.)
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The ASM-86 version of (he dice Program operates
like the PL/M-86 version. Since the program uses
the PL/M-86 CO procedure for writing data to
the Intellec console, it adheres (0 certain conven-
tions established by the PL/M-86 compiler. The
program’s logical segments ({called CODE,
DATA and STACK—the program does not use
an extra segment} are organized into two groups
calied CGROUP and DGROUP. All the mem bers
of a group of logical segments are localed in the
same 64k byte physical memory segment.
Physically, the program’s DATA and STACK
segments can be viewed as “‘subsegments” of
DGROUFP,

PL/M-B6 procedures expect parameters to be
passed on the stack, so the program pushes each
character before calling CO. Note that the stack
will be “‘cleaned up’ by the PL/M-B6 procedure
before returning {i.e., the parameter will be
removed from the stack by CO),

2.10 Programming Guidelines
and Examples

This section addresses 8086/8088 pregramming
from two different perspectives. A series of
gencral guidelines s presented first. These
guidelines apply to all types of systems and are
intended 10 make software easier to write, and
particularly, easier to maintain and enhance. The
second part contains a number of specific pro-
gramming examples. Written primarily in
ASM-86, these examples illusirate how the
instruction set and addressing modes may be uti-
lized in various, commonly encountered program-
ming situations,

Programming Guidelines

These guidelines encourage the development of
80868088 software that is adaptable to change.
Some of the guidelines refer to specific processor
features and others suggest approaches to general
software design issues. PL/M-86 programmers
need not be concerned with the discussions thal
deal with specific hardware topics; they should,
however, give careful attention to the system
design subjects. Systems that are designed in
accordance with ihese recommendations
should be less costly to modify or extend. In
addition, they should be better-positioned to

take advantage of new hardware and sofiware
products that are constantly being introduced
by Intel.

Segments and Segment Registers

Segments should be considered as independent
logical units whose physical locations in memory
happen (o be defined by the contents of the seg-
menl registers. Programs should be independent
of the actual contents of the segment registers and
of the physical locations of segments in memory,
For example, a program should not take
advantage of the “knowledge’” that two segments
are physicaily adjacent to each other in memory,
The single exception to this fully-independent
treatment of segments is that a program may set
up maore than one segment register to point to the
samg segment in memory, thereby obtaining
addressability through more (han one segmerntt
register. For example, if both DS and ES peint to
the same segment, a string located in that segment
may be uscd as a source operand in one string
instruction and as a destination string in another
instruction (recall that a destination string must
be located in the extra segment).

Any data aggregate or construct such as an array,
astrocture, a siring or a stack should be restricted
to 64k bytes in length and should be wholly con-
tained in one segment (i.e., should not CroSs a seg-
ment boundary).

Segment regislers should only contain values sup-
plied by the relocation and linkage facilities. Seg-
ment register values may be moved 1o and from
memoty, pushed onto the stack and popped from
the stack. Segment registers should never be used
10 hold temporary variables nor should they be
altered in any other way,

As an additional guideline, code should nos be
written within six byies of the end of physical
meenory (or the end of the code segment if this
segment is dynamically relocatable). Failure 1o
observe this guideline could result in an attempted
opcode prefetch from non-existent memory,
hanging the CPU if READY is not returned.

Seli-Modifying Code

[t is possible to write a program that deliberately
changes some of its own machine insiructions
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during execution. While this technique may save a
few bytes or machine cycles, it does so at the
expense of program clarity. This is particularly
irue if the program is being examined at the
machine instruction level; the machine instruc-
tions shown in the assembly listing may not match
those found in memory or monitered from the
bus. It also precludes executing the code from
ROM. Also, because of the prefetch queue within
the 8086 and 8088, code that is self-modified
within six bytes of the current point of exceution
cannot be guaranteed to execute as intended.
{This code may already have been fetched.) Fin-
ally, a setf-modifying program may prove
incompatible with future Inte! products that
assume that the contemt of a code segment
remains constant during execution.

A corrollary to this requirement is that variable
data should not be placed in a code segment. Con-
stant data may be written in a code segment, but
this is not recemmended for two reasons. First,
programs are simpler to understand if they are
uniformly subdivided into segments of code, data
and stack. Second, placing data in a code segment
¢an restrict the segment’s position independence.
This is because, in general, the sepment base
address of a data ilem may be changed, but the
offset {displacement) of the data item may not.
This means that the entire segment must be
moved as a vnit 10 avoid changing the offser of
the constant data. If the constant data were
located in a data segment or an extra segment,
individual procedures within the code segment
could be moved independently.

Input/Outpul

Since 170 devices vary so widely in their
capabilities and their interface designs, 1/0) sofi-
ware is inevitably device dependent. Substituting
a hard disk for a floppy disk, for example,
necessitates software changes even though the
disks are functionally identical, 1/0 soliware can,
however, be designed to minimize the effect of
device changes on programs.

Figure 2-68 illustrates a design concept that struc-
tures an 170 sysiem into a hierarchy of separately
compiled/assembled modules. This approach
isolates application modules that use the
input/output devices from all physical
characteristics of the hardware with which they
ultimately communicate. An application module

that reads a disk file, for example, should have no
knowledge of where the file is located on the disk,
what size the disk sectors are, etc. This allows
these characteristics to change without affecting
the application module. To an application
module, the 17O sysiem appears to be a scries of
file-oriented commands {e.g., Open, Close, Read,
Write). An application module would typically
issue a command by calling a file system
procedure.

The file system processes 1/0 command requests,
perhaps checking for gross errors, and calls a pro-
cedure in the [/O supervisor. The 1/0Q supervisor
is a bridge between the functional 1/0 request of
the application module and the physical 170 per-
formed by the lowest-level modules in the hier-
archy. There should be separate modules in the
supervisor for different types of devices and some
device-dependent code may be unavoidable art this
level. The 170 supervisor would typically perform
overhead activities such as maintaining disk
direciories.

The modules that actually communicate with the
170 devices (or their controllers) are at the lowest
level in the hierarchy. These modules contain the
bulk of the system’s device-dependent code that
will have 10 be modified in the event thar a device
is changed.

The 8082 Inpul/Output Processor is specifically
designed to encourage the development of
modular, hierarchical 1/0 systems. The 8089
allows knowledge of device characteristics 10 be
*hidden’’ from not only application programs,
but also from the operating system that controls
the CPU. The CPU’s 170 supervisor can simply
prepare a message in memory that describes the
nature of the operation to be performed, and then
activate the 8089. The 8089 independently per-
forms all physical }/0 and notifies the CPU when
the operation has been completed.

Operating Systems

Operaling systems also should be organized in a
hierarchy similar to the concept illustrated in
figure 2-69. Application modules should *‘see”
only the upper level of the operating system. This
level might provide services like sending messages
between application modules, providing time
delays, etc. An intermediate level might consist of
housekeeping routines that dispatch tasks, alter
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Figure 2-68, I/O System Hierarchy Concept
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Figure 2-69. Operating System Hierarchy
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priorities, manage memory, etc. At the lowest
level would be the modules that implement
primitive operations such as adding and removing
tasks or messages from lists, servicing timer inter-
rupts, etc.

Interrupt Service Procedures

Procedures that service external interrupts should
be considered differently than those that service
internal interrupts. A service procedure that is
activated by an internal interrupt, may, and often
should, be made reentrant. External interrupt
procedures, on the other hand, should be viewed
as temporary tasks. In this sense, a task is a single
sequential thread of execution; it should not be
reentered. The processor’s response to an external
interrupt may be viewed as the following sequence
of events:

*  the running (active) task is suspended,

+  anew task, the interrupt service procedure, is
created and becomes the running task,

®  the interrupt task ends, and is deleted,

» the suspended task is reactived and
becomes the running task from the point
where it was suspended.

An external interrupt procedure should only be
interruptable by a request that activates a dif-

ferent interrupt procedure. When the number of
interrupt sources is not too large, this can be
accomplished by assigning a different type code
and corresponding service procedure to each
source. In systems where a large number of
similar sources can generate closely spaced inter-
rupts (e.g., 500 communication lines), an
approach similar to that illustrated in figure 2-70,
may be used to insure that the interrupt service
procedure is not reentered, and yet, interrupts
arriving in bursts are not missed. The basic
technigque is to divide the code required to service
an interrupt into two parts, The interrupt service
procedure itself is kept as short as possible; it per-
forms the absolute minimum amount of process-
ing necessary 10 service the device, It then builds a
message that contains enough information to per-
mit another task, the interrupt message processor,
to complete the interrupt service. It adds the
message to a queue (which might be implemented
as a linked list), and terminates so that it is
available to service the next interrupt. The inter-
rupt message processor, which is not reentrant,
obtains a message from the queue, finishes pro-
cessing the interrupt associated with that message,
obtains the next message (if there is one), etc.
When a burst of interrupts occurs, the gueue will
lengthen, but interrupts will not be missed so long
as there is time for the interrupt service procedure
to be activated and run between requests.

MULTIPLE INTERRUPT SOURCES

F

INTERRUPT
SERVICE

ADD MESSAGE TO QUEUVE

PACGCEDURE

===
o QUEUE {LIST
1
= = — = — Messages
_——
e
OBTAIN NEXT MESSAGE
FROM QUEVE

INTERRUPT
MESSAGE
FROCESSOR

Figure 2-70. Interrupt Message Processor
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Stack-Based Parameters

Parameters are frequently passed to procedures
on a stack. Results produced by the procedure,
however, should be returned in other memory
locations or in rexisters. In other words, the called
procedure should “‘clean up’ the stack by dis-
carding the parameters before returning. The.

RET instruction can perform this Ffunction.
PL/M-86 procedures always follow this
convention.

Flag-lmages

Programs should make no assumptions about the
coments of the undefined bits in the flag-images
stored in memory by the PUSHF and SAHF
instructions, These bits always should be masked
out of any comparisons or tests that use these
flag-images. The undefined bits of the word flag-
image can be cleared by ANDing the word with
FD3H. The undefined bits of the byte flag-image
caii be cleared by ANDing the byte with D5H.

Programming Examples

These examples demonstrate the 8086/8088
instruction set and addressing modes in common
programming situations. The following topics are
addressed:

procedures {parameters, reentrancy)
of JMP and CALL

*  various forms

instructions

bit mantpulation with the ASM-86 RECORD
facility

dynamic code relocation
memory mapped 170
breakpoints

interrupt handling
string operations

These examples are written primarily in ASM-36
and will be of most interest to assembly language
programmers. The PL/M-86 compiler generates
code that handles many of these situations
automatically for PL/M-86 programs. For exam-
ple, the compiler takes care of the stack in
PL/M-86 procedures, allowing the programmer
to concenirate on solving the application prob-
lem. PI./M-86 programmers, however, may want

to  examine the memory mapped /O and
interrupt handling exampies, since the concepts
Hlustrated are generally applicable; one of the
interrupt procedures is written in PL/M-86.

The examples are intended to show One wWay to use
the instruction set, addressi ng modes and features
of ASM-86. They do not demonstrate the “*best’’
way to solve any particular problem, The flexibil-
ity of the 8086 and 8088, application differences
plus variations in programming style usually add
up to a number of ways to implement g program-
ming solution.

Procedures

The code in figure 2-71 illustrates several tech-
Rigues that are typically used in writing ASM-86
procedures. In this example a calling program
invokes a procedure (called EXAMPLE) twice,
passing it a different byte array cach time. Two
paranelers are passed on the stack: the first comn-
tains the number of elements in the array, and the
second contains the address (offset in
DATA_SEG) of the Ffirst array element. This
same technique can be used to pass a variable.
length parameter list to a procedure (the “array”’
could be any series of parameters or parameter
addresses). Thus, although the procedure always
Teceives two parameters, these can be used 1o
indirectly access any number of wvariables in
memory,

Any results returned by a procedure should be
placed in registers or in memory, but not on the
stack. AX or AL is often used to hold a single
word or hyte result. Alternatively, the calling pro-
gram can pass the address {or addresses) of gz
result area 10 the procedure as a parameter. It is
good practice for ASM-86 programs to follow the
calling conventions used by PL/M-86: these are
documented in MCS-§6 Assembler Operating
Instructions For [SIS.IF Users, Order No.
9800641,

EXAMPLE is defined ag a FAR procedure,
meaning it is in a different segment than the call-
ing program. The calling program must use an
intersegment CALL (o activate the procedure.
Note that this type of CALL saves CS and IP on
the stack. If EXAMPLE were defined as NEAR
(in the same segment as the caller) then an intra-
segment CALTL would be used, and only IP would
be saved on the stack. It is the responsibility of
the calling program (o know how the procedure is
defined and to issue the correct type of CALL,

Mnemonics -« mtel, 1978
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STACK_SEG SEGMENT

ow 20 DUP (?} ; ALLOCATE 20-WORD STACK
STACK_TOP LABEL WORD :LABEL INITIAL TOS
STACK_SEG ENDS
DATA__SEG SEGMENT
ARRAY_1 DB 10 DUP (7} ; 10-ELEMENT BYTE ARRAY
ARRAY__.2 DB 5DUP({?) ; 9-ELEMENT BYTE ARRAY
DATA__SEG ENDS

PROC_SEG SEGMENT
ASSUME CS:PROC_SEG,DS:DATA_SEG,SS:STACK_SEG,ES:NOTHING

EXAMPLE PROC FAR ;MUST BE ACTIVATED BY
; INTERSEGMENT CALL
; PROCEDURE PROLOG
PUSH BP ; SAVE BP
MOV BP,SP ; ESTABLISH BASE POINTER
PUSH CX y SAVECALLER'S
PUSH BX ) REGISTERS
PUSHF ; AND FLAGS
suB SP.6 ; ALLOCATE 3WORDS LOCAL STORAGE

; END OF PROLOG
: PROCEDURE BODY
MOV CX,[BP+8] ;GETELEMENT COUNT
MOV BX,[BP+6] ;GETOFFSETOF 1ST ELEMENT
; PROCEDURE CODE GOES HERE
; FIRST PARAMETER CAN BE ADDRESSED:
i [BX]
; LOGAL STORAGE CAN BE ADDRESSED:
. [BP-8), (BP-10], [BP—12]
; END OF PROCEDURE BODY
; PROCEDURE EPILOG

ADD sP,6 ; DE-ALLOCATE LOCAL STORAGE

POPF i RESTORE CALLER'S

POP BX ;  REGISTERS

POP CX i AND

POP BP ;. FLAGS

; ENDOF EPILOG
; PROCEDURE RETURN

RET 4 . DISCARD 2 PARAMETERS
EXAMPLE ENDP : END OF PROGEDURE ““EXAMPLE"
PROC_SEG ENDS

Figure 2-71. Procedure Example |

2. 1HH TAReManIcs ©

fntel, 1978
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CALLER_SEG  SEGMENT
; GIVE ASSEMBLER SEGMENT

ASSUME CS:CALLER__SEG,
& DS:DATA__SEG,

& SS:8TACK_SEG,
& ES:NOTHING

: INITIALIZE SEGMENT REGISTERS

{REGISTER CORRESPONDENCE

NO EXTRA SEGMENT IN THIS PROGRAM

START: MOV AX.DATA__SEG
MOV DS, AX
MOV AX.STACK_SEG
MQV $8,AX
MOV

' ASSUME ARRAY _1 IS INITIALIZED

SP,OFFSET STACK_TOP ; POINT SPTO TOS

;CALL “EXAMPLE”, PASSING ARRAY__1, THAT IS, THE NUMBER OF ELEMENTS

+ INTHE ARRAY, AND THE LOCATION OF THE FIRST ELEMENT.
MoV AX,SIZE ARRAY_1
PUSH AX
MOV AX,OFFSET ARRAY_ 1
PUSH AX
CALL EXAMPLE

; ASSUUME ARRAY_21S INITIALIZED

;CALL “EXAMPLE'" AGAIN WITH DIFFERENT $IZE ARRAY.

MOV AX,SIZE ARRAY__2

PUSH AX

MOV AX,OFFSET ARRAY_2

PUSH AX

CALL EXAMPLE
CALLER_SEG ENDS

END START

Figure 2-71. Procedure Example 1 (Cont'd )

Figure 2-72 shows the stack before the caller
pushes the parameters onto i1, Figure 2-73 shows
the stack as the procedure receives it after the
CALL has been executed.

EXAMPLE is divided into four sections, The
“prolog” sets up register BP <o it can be used to
address data on the stack (recall that specifying
BP as a base register in an instruction auto-
matically refers to the stack segment unless a seg-
ment override prefix is coded). The next step in
the prolog is to save the “‘state of the machine” as

it existed when the procedure was activated. This
is done by pushing any registers used by the pro-
cedure (only CX and BP in this case} onto the
stack. If the procedure changes the flags, and the
caller expects the flags 1o be unchanged following
execution of the procedure, they also may be
saved on the stack. The last instruction in the pro-
log allocates three words on the stack for the pro-
cedure to use as local temporary storage. Figure
2-74 shows the stack at the end of the prolog.
Note that PL/M-86 procedures assume that all
registers except SP and BP can be used without
saving and restoring.

Mrgmanics & Indel, 1978
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s 5P {TOS)

Figure 2-72. Stack Before Pushing Parameters

HIGH ADDRESSES
BP + § m——eaipe PARAMETER 1
BP + 66— FARAMETER 2
oLwpcCs
aLpie
Lo BP -i—— B P
OLDCX
QLD BX
OLD FLAGS
BP—§——m3 LGCAL 1
BP 1D | LOCAL 2
BP—12— LOCAL 3 ~—— SP (TOS}
LOW ADDRESSES

Figure 2-74. Stack Following Procedure Prolog

HIGH ADDRESSES

PARAMETER 1

PARAMETER 2
aLpcs
oLewp

e 5P (TOS)

LOW ADDRESSES

Figure 2-73. Stack at Procedure Entry

The procedure “‘body™” does the actval processing
(none in the example). The parameters on the
stack are addressed relative to BP. Note that if
EXAMPLE were a NEAR procedure, CS would
not be on the stack and the parameters would be
two bytes “‘closer’ to BP. BP also is used to
address 1he local variables on the stack. Local
constants are best stored in a data or extra
segment.

The procedure ‘‘epilog’’ reverses the activities of
the prolog, leaving the stack as it was when the
procedure was entered (see figure 2-75).

HIGHER ADDRESSES

PARAMETER 1
PARAMETER 2
RETURN ADCRESS
QLD BF

~—BP & 5P (TOS}

LOWER ADDRESSES

Figure 2-75. Stack Fellowing Procedure Epilog
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The procedure “*return’’ restores CS and IP from
the stack and discards the parameters. As figure
2-76 shows, when the calling program is resumed,
the stack is in the same state as it was beforc any
parameters werg pushed onto it.

HIGH ACDRESSES

--— SF(TOS)

LOW ADDRESSES

Figure 2-76. Stack Following Procedure Return

Figure 2-77 shows a simple procedure thar uses an
ASM-86 structure to address the stack. Register
BP is pointed ta the base of the structure, which is
the top of the stack since the stack grows woward
lower addresses (see figure 2-78). Any structure
element can then be addressed by specifying BP as
a base register:

{BP].structure. _element.

Figure 2-79 shows a different approach to using
an ASM-86 structure to define the stack lavout.
As shown in figure 2-80, register BP is pointed at
the middle of che strucwure {at OLD__BP) rathey
than at the base of the structure. Parameters and
the return address are thus located ar positive
displacements (high addresses) from BP, while
local variables are at negative displacements
(lower addresses) from BP. This means that the
lecal vaniables will be ““closer” to the beginning
of the stack segment and increases the likelihood
that the assembler will be able to produce shorter
instructions to access these variables, i.¢., their
offsets from SS may be 255 bytes or less and can
be expressed as a 1-byte value rather than a 2-byte
value. Exit from the subroutine also is slightly
faster because a MOV instruction can be used to
deallocate the local storage instead of an ADD
{compare figurc 2-71).

It is possible for a procedure (o be activated a sec-
ond time before it has returned from its first
activation. For example, procedure A may call
procedure B, and an interrupt may occur while
procedure B is executing. 1f the interrupt service
procedure calls B, then procedure B is reentered
and musl be writlen to handle this sitvation cor-
rectly, ie., the procedure must be made
reentrant.

In PL/M-86 this can be done by simply writing:
B: PROCEDURE (FARM1, PARMZ} REENTRANT,

An ASM-86 procedure will be reentrant if it uses
the stack for storing all local variables. When the
procedure 15 reentered, a new ‘‘generation’” of
variables will be allocated on the stack. The stack
will grow, but the sets of variables (and the
parameters and return addresses as well) will
automatically be kept straight. The stack must be
large enough to accommodaie the maximuwm
“‘depth’ of procedure activation that can occur
under actual running conditions. In addition, any
procedure called by a r¢entrant procedure must
itself be reentrant.

A related situation that also requires reenisant
procedures is recursion. The following are
examples of recursion:

s A calls A (direct recursion),
« A calls B, Bcalls A {indirect recursion),

* A calls B, B calls C, C calls A (indirect
recursion).
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CODE SEGMENT
ASSUME CS:CODE
MAX PROC
; THIS PROCEDURE 1S CALLED BY THE FOLLOWING
: SEQUENCE:
: PUSH PARM1
; PUSHPARM?2
: CALL MaX
;IT RETURNS THE MAXIMUM OF THE TWO WORD
i PARAMETERS IN AX,

; DEFINE THE STACK LAYQUT AS A STRUCTURE.
STACK_LAYQUT STRUC

OLD._BP DW ? : SAVED BF VALUE—BASE OF STRUCTURE
RETURN__ADDR DW? ; RETURN ADDRESS
PARM_2 Dw ? ; SECOND PARAMETER
PARM _1 DW ? ; FIRST PARAMETER
STACK_ LAYOUT ENDS
 PROLOG
PUSH BP cSAVEINOLD__ BP
MoV BP, SP CPOINTTOOLD_ BP
: BODY
MOV AX, |BP|.PABM 1 IF FIRST
CMP AX, [BP]|.PARM_2 ;>SECOND
JG FIRST_I1S _MAX *THEN RETURN FIRST
MOV AX, |BPIL.PARM_2 ;ELSERETURN SECOND
; EPILOG
FIRST_IS__MAX: POP BP :RESTORE BF (& SP)
RETURN
RET | : DISCARD PARAMETERS
MAaX ENDP
CODE ENDS
END
Figure 2-77. Procedure Example 2
" HIGHER ADDRESSES " .Iumps and Calls

The 80868088 instruction set contains many dif-
ferent types of JIMP and CALL instructions (e.g..

PARAMETER 1 direct, indirect through register, indirect through
PARAMETER 2 memory, etc.). These varying types of transfer
AETURN ADDRESS provide efficient use of space and execution time
OLD BP ~——BP & 5P (TOS) in different programming situations. Figure 2-81

illustrates typical use of the different forms of
these instructions. Note that the ASM-86

4 b" - (3% LR} (%] Y
LOWER ADDRESSES assembler uses the terms NEAR and “FAR
to denote intrasegment and intersegment trans-
Figure 2-78. Procedure Example 2 Stack Layout fers, respectively.
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EXTRA SEGMENT
 CONTAINS STRUCTURE TEMPLATE THAT “NEARPROC”’
1 USESTOADDRESS AN ARRAY PASSED BY ADDRESS.

DUMMY STRUC
PARM_ARRAY DB 256 DUP ?
DUMMY ENDS
EXTRA ENDS
CODE SEGMENT
ASSUME CS:CODE,ES:EXTRA
NEARPROC PROC
; LAY OUT THE STACK (THE DYNAMIC STORAGE AREA OR DSA).
DSASTRUGC STRUC
| oW ? ; LOCAL VARIABLES FIRST
LOC_ARRAY  DW 10 DUP (2} .
OLD_BP oW ? ; ORIGINAL BF VALUE
RETADDR DW ? ; RETURN ADDRESS
POINTER DD ? : 2ND PARM—POINTER TO “PARM__ARRAY"
COUNT o8 ? ; 15T PARM—A BYTE OCCUPFIES
DB 2 ;  AWORD ON THE STACK
DSASTRUC ENDS

; USE AN EQU TO DEFINE THE BASE ADDRESS OF THE
i DSA. CANNOT SIMPLY USE BP BECAUSE IT WILL
BE POINTING TO *'OLD_BP*’ IN THE MIDDLE OF

THEDSA.
DSA EQU [BF — OFFSET OLD_BP)
: PROCEDURE ENTRY
PUSH BP . SAVE BP
MOV BP, SP . POINT BP AT OLD_BP
SUB SP,OFFSET OLD..BP ; ALLOCATE LOC_ ARRAY & |
: PROCEDURE BODY
. ACCESS LOGAL VARIABLE |
MOV AX,DSA.)
; ACCESS LOCAL ARRAY (3) L.E., 4TH ELEMENT
MOV SI6 : WORD ARRAY-INDEX IS 3+2
MOV AX,DSA.LOG__ARRAY [S1)

; LOAD PQINTER TO ARRAY PASSED BY ADDRESS
LES BX,DSA.POINTER

; ESIBX NOW POINTS TO PARM _ARRAY (0)
; ACCESS SI'TH ELEMENT OF PARM__ARRAY
MOV AL,ES:[BX] PARM__ARRAY [Si]

; ACCESS THE BYTE PARAMETER
MOV AL ,DSA.COUNT

Figure 2-79, Procedure Example 3
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; PROCEDURE EXIT
MOV SP.BF ; DE-ALLOCATE LOCALS
POP EP ; RESTORE BP
: STACK NOW A8 RECEIVED FROM CALLER
RET 6 ; DISCARD PARAMETERS
NEARPROC ENDP
CODE ENDS
END

Figure 2-79. Procedure Example 3 (Cont'd.)

o HIGHER ADDRESSES The procedure in figure 2-81 illustrates how a
W PL/M-8 DO CASE construction may be
[ count implemented in ASM-86. Tt also shows:
POINTER -
* an indirect CALL through memory (0 a
RETADPR procedure located in another segment,
oLD_BP +— BP
LOC_ARRAY {8} *  adirect JMP to a label in another segment,
LOC_ARRAY (8}
LOC_ARRAY (T)

* an indirect JMP though memory to a label in

LOC_ARRAY {6} the same segment,

LOC__ARRAY i5)

LOC__ARRAY (4) . . b b .
LOC_ARRAY (3) an indirect JMP through a register to a label

in the same segment,

LOC ARRAY (2)

LOC_ARRAY (1) ] ]

LOC_ARRAY (0) ¢ a direet CALL to a procedure in another
; — 5P segment,

¢ g direct CALL to a procedure in the same
segment,

" LOWER ADDRESSES

¢ direct TMPs to labels in the same segment,
within —128 to +127 bytes {*SHORT"") and

Figure 2-80. Procedure Example farther than —128 1o +127 bytes ( ‘NEAR").

3 Stack Layout
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8086 AND 8088 CENTRAL PROCESSING UNITS

DATA SEGMENT

:DEFINE THE CASE TABLE (JUMP TABLE) USED BY PRCCEDURE
; “'DO_CASE.”” THE OFFSET OF EACH LABEL WILL

; BEPLACED IN THE TABLE BY THE ASSEMBLER.

CASE_TABLE Dw ACTIONO, ACTION1, ACTION2,
& ACTIONS, ACTION4, ACTIONS
DATA ENDS

; CEFINE TWO EXTERNAL (NOT PRESENT IN THIS
; ASSEMBLY BUT SUPPLIED BY R & L FACILITY}
H PROCEDURES. ONE IS IN THIS CODE SEGMENT
{NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR}.
EXTRN NEAR_PROC: NEAR, FAR__PROG: FAR

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT
: IS IN ANOTHER SEGMENT.
EXTRN ERR__EXIT: FAR

CODE SEGMENT

ASSUME CS:CODE,DS:DATA
; ASSUME DS HAS BEEN SET UP
: BY CALLER TO POINT TQ “DATA™ SEGMENT,

DO_CASE PROC NEAR

: THIS EXAMPLE PROCEDURE REGEIVES TWOQ

;  PARAMETERS ON THE STACK. THE FIRST

; PARAMETERIS THE “"CASE NUMBER'' OF

i AROUTINE TO BE EXECUTED (0-5). THE SECOND
i PARAMETERIS APOINTER TO AN ERROR

i PROCEDURE THAT IS EXECUTED IF AN INVALID
i CASENUMBER {>5) IS RECEIVED.

LAY QUT THE STACK.
STACK_LAYOQUT STRUC
OLD_BP Dw ?
RETADDR Dw ?
ERR_PROC__ADDR DD ?
CASE_NO D& ?

DB ?

STACGK _LAYOUT ENDS

; SET UP PARAMETER ADDRESSING
PUSH BP
MOV BP, 5P

i CODE TO SAVE CALLER'S REGISTERS COULD GO HERE.

; CHECK THE CASE NUMBER
MOV BH, 0
MOV BL, [BP].CASE_NO
CMP BX, LENGTH CASE_TABLE
JLE OK s ALL CONDITIONAL JUMPS

; ARE SHORT DIREGT

Figurec 2-81. JMP and CALL Examples
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; CALLTHE ERROR ROUTINE WITH A FAR
7 INDIRECT CALL. A FARINDIRECT CALL
i ISINDICATED SINCE THE OPERAND HAS
TYPE “DOUBLEWORD.”
GALL [BP].ERR_PRQC__ADDR

; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT.
v AFARDIRECT JUMP 1S INDICATED SINCE
THE OPERAND HAS TYPE “FAR.”’
JMP ERR_EXIT

OK:
 MULTIPLY CASE NUMBER BY 2 TO GET OFFSET
INTO CASE_TABLE (EACHENTRY IS 2 BYTES).
SHL BX.1
: NEAR INDIRECT JUMP THROUGH SELECTED
i ELEMENTOF CASE_ TABLE. A NEAR
. INDIRECT JUMP IS INDICATED SINCE THE
OPERAND HAS TYPE “WORD. "
JMP CASE_TABLE [BX]

ACTIONO: ; EXECUTED IF CASE_NO =10
» CODE TQ PROCESS THE ZERQ CASE GOES HERE.
FOR ILLUSTRATION PURPOSES, USE A
NEAR INDIRECT JUMP THROUGH A
:  REGISTER TO BRANCH TO THE POINT
;  WHERE ALL CASES CONVERGE.
: ADIRECT JUMP (JMP ENDCASE) 1S
i AGTUALLY MORE APPROPRIATE HERE.

MOV AX, OFFSET ENDCASE
JMP ax
ACTIONT: i EXECUTED IF CASE__NO =1

:CALLAFAR EXTERNAL PROCEDURE. A FAR
;  DIRECT CALL ISINDICATED SINCE OPERAND
HAS TYPE “FAR.”

CALL FAR__PROG
; CALL ANEAR EXTERNAL PROCEDURE.
CALL NEAR__PROC

; BRANCH TQ CONVERGENGE POINT USING NEAR
; DIRECT JUMP. NOTE THAT “'ENDCASE"’
;1S MORE THAN 127 BYTES AWAY

S0 A NEARDIRECT JUMP WILL BE USED.

JMP ENDCASE
ACTIONZ: ; EXECUTED IF CASE_NO =2
; CODE GOES HERE
JMP ENDCASE : NEAR DIRECT JUMP

Figure 2-81. JMP and CALL Examples (Cont’d.)
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ACTIONS: ; EXEGUTED IF CASE_NGO =3
; CODE GOES HERE
JMP ENDCASE i NEARDIRECT JMP

s ARTIFICIALLY FORCE “ENDCASE"” FURTHER AWAY
i SOTHAT ABOVE JUMPS CANNOT BE “SHORT.™

ORG 500
ACTIONZ: ; EXECUTED IF CASE_NQ =4
 CODE GOES HERE
JMp ENDCASE  NEARDIRECT JUMP
ACTIONS: i EXECUTED IF CASE_NO=§

; GODE GOES HERE.
i BRANCH TO CONVERGENCE POINT USING
: SHORT DIRECT JUMP SINCE TARGET IS
i WITHIN 127 BYTES. MACHINE INSTRUCTION
;  HAS1-BYTEDISPLACEMENT RATHER THAN
y  2-BYTE DISPLACEMENT REQUIRED FOR
;  NEARDIRECT JUMPS. “SHORT"' IS
WRITTEN BECAUSE "ENDCASE" IS A FORWARD
:  REFERENCE, WHICH ASSEMBLER ASSUMES IS
i “NEAR.”|F “ENDCASE" APPEARED PRIOR
v TOTHE JUMP, THE ASSEMBLER WOULD
i AUTOMATIGALLY DETERMINE IF IT WERE REACHABLE

;' WITH A SHORT JUMP.
JMP SHORT ENDCASE
ENDCASE: ; ALL CASES CONVERGE HERE.

; POPCALLER'S REGISTERS HERE.
; RESTORE BP & SP, DISCARD PARAMETERS
i AND RETURN TO CALLER.

MOV SP, BP

POP BP

RET ]

DO_CASE ENDP

CODE ENDS
END ; OF ASSEMBLY

Figure 2-81. JMP and CALL Examples (Cont’d 2

Records

Figure 2-82 shows how the ASM-86 RECGRD
facility may be used to manipulate bit data. The

example shows how to: *  assign aconstant known at assembly time,
*  right-justify a bit Field, *  assign a variable,
*  iest for a value, *  setorclear a bir field.
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DATA SEGMENT
: DEFINE A WORD ARRAY
XBEF DW 3000 DUP {?)

: EACH ELEMENT OF XREF CONSISTS OF 3FIELDS:
A 2-BIT TYPE CODE,

A1-BIT FLAG,
A13-BIT NUMBER.
DEFINE A RECORD TO LAY QUT THIS ORGANIZATION.
LINE_REC RECCRD  LINE_TYPE:2,
& VISIBLE: 1,
& LINE._NUM: 13
DATA ENDS
CODE SEGMENT

ASSUME C5: CODE, DS:DATA
; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY
; AND THAT S1INDEXES AN ELEMENT OF XREF.

; ARECORD FIELD-NAME USED BY ITSELF AETURNS
: THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY
THE FIELD. ISOLATE “*LINE__TYPE" IN THIS

i MANNER.
MOV AL, XREF (5]
MOV CL, LINE_TYPE
SHR AX, CL

; THE “"MASK" OPERATOR APPLIED TO A RECORD
; FIELD-NAME RETURNS THE BIT MASK
;  REQUIRED TOISOLATE THE FIELD WITHIN
;  THERECORD. CLEAR ALL BITS EXCEPT

“LINE_NUM."
MOV DX, XREF[SI)
AND DX, MASK LINE__NUM
; DETERMINE THE VALUE OF THE “VISIBLE” FIELD
TEST XREF[SI], MABK VISIBLE
JZ NOT__VISIBLE

i NOJUMPIF VISIBLE =1
NOT_VISIBLE: :JUMP WERE {F VISIBLE = 0

- ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME
. TOAFIELD, BY FIRST CLEARING THE BITS
: AND THEN OF'ING IN THE VALUE, IN
THIS CASE “‘LINE__TYPE” IS SET TO 2 (108B).
AND XREF[SI], NOT MASK LINE_TYPE
OR XREF(S1),2 SHL LINE_TYPE
: THE ASSEMBLER DOES THE MASKING AND SHIFTING.
; THE RESULT IS THE SAME AS:
AND XREF[SI], 3FFFH
OR XREF{SI]. 8000H
:  BUT IS MORE READABLE AND LESS SUBJECT
:  TOCLERICAL ERROR.

Figure 2-82. RECORD Example
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+ ASSIGN A VARIABLE (THE CONTENT OF AX)

; TOLINE_TYPE.
MOV GL,LINE _TYPE :SHIFT COUNT
SHL AX, CL ; SHIFT TO “LINE UP BITS
AND XREF[SI}, NOT MASK LINE_TYPE ;CLEARBITS
OR XREF[SI], AX :ORINNEWVALUE

- NOSHIFT IS REQUIRED TO ASSIGN TO THE
; RIGHT-MOST FIELD, ASSUMING AXCONTAINS
i A VALID NUMBER (HIGH 3 BITS ARE D),

; ASSIGN AX TO “LINE__NUM."

AND XREF([SI), NOT MASK LINE _NUM
OR XREF[S1], AX

sAFIELD MAY BE SET OR CLEARED WITH

+ ONEINSTRUCTION. GLEAR THE “VISIBLE"

+ FLAG AND THEN SET 7.

AND XREF[SI], NOT MASK VISIBLE

OR XREF[SI], MASK VISIBLE
CODE ENDS

END i OF ASSEMBLY

Figure 2-82. RECORD Example (Cont’d.)

The following considerations apply o position-
independent code sequences:

* A label that is referenced by a direct FAR
(intersegment) transfer js not moveable,

* A label that is referenced by an indirec
transfer (either NEAR or FAR) is moveable
s0 long as the register or MeMary pointer 1o
the tabel coniains the label’s carrent address.

*  Alabel that is referenced by a SHORT (e.g.,
conditional jump) or a direct NEAR (in-
lrasegment) transfer is moveable so long as
the referencing instruction is moved with the
label as a unit. These transfers are self-
refutive; that is they require only that the
label maintain (he same distance from the
referencing instruction, and actual addresses
are iimmaterial.

*  Damis segment-independent, but not offset-
independent. That is, a data item may be
moved (0 a different segment, but it must
maintain the same offset from the beginning
of the segment. Placing constants in a unit
of code also effectively makes the code
offsel-dependent, and therelore is not
recommended,

* A procedure should not be moved while it is
active or while any procedure it has called is
active.

* A section of code thal has been interrupted
should not be moved.

The segment thay is receiving a section of code
must have “room’’ for the code. If the MOVS {or
MOVSB or MOVSW) mstruction artempis (o
auto-increment DI past 64k, it wraps around (o 0
and causes the beginning of the segment to be
overwritten. If a segment override is needed for
the seurce operand, code similar to the fotlowing
can be nsed to properly resume the instruciion if it
is interrupted:

RESUME: REF mMovs DESTINATION, ES:SOURCE
HF CX NOT = 6 THEN INTERSUPT HAS OCOURRED
AND CX.COX CCXmtl?
JHNZ  RESUME ;NO. FINISH EXECUTION
{CONTROL COMES HERE WHEN STRIMG HAS BEEN MOVED

If the MOVS s interrupted, the CPU
“‘remembers’”  the segment  override, bug
“forgets™ the presence of Lhe REP prefix when
execution resumes, Testing CX indicates whether
the instruection is completed or not. Jumping back
(0 the instruction resumes it where it left off. Note
that 4 segment override cannot be specified with
MOVSB or MOVSW.
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Dynamic Code Relocation

Figure 2-83 illustrates one approach to moving
programs in memory at cxecution time. A *‘super-
visor’’ program (which i3 not moved) keeps
a pointer variable that contains the current foca-
tion {offset and scgment base} of a position-
independent procedure. The supervisor always

calls the procedure through this pointer. The
supervisor also has access to the procedure’s
length in bytes. The procedure is moved with the
MOVSB instruction. After the procedure s
moved, its pointer is updated with the new loca-
tion. The ASM-86 WORD PTR operator is writ-
ten to inform the assembler that one word of the
doubleword pointer is being updated at a time.

MAIN__DATA SEGMENT

: SET UP POINTERS TO POSITION-INDEPENDENT PROCECURE
:  AND FREE SPACE.

PIP_PTR DD EXAMPLE

FREE_PTR DD TARGET__SEG

: SET UP SIZE OF PROCEDURE IN BYTES

PIP SIZE Dw EXAMPLE _LEN
MAIN_DATA ENDS
STACK SEGMENT

Dw 20 DUP{?) ; 20 WORDS FOR STACK
STACK_TOP LABEL WORD ; TOS BEGINS HERE
STACK ENDS
SOURCE_SEG  SEGMENT

: THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT.
: OTHER CODE MAY PRECEDE IT, ).E., ITS OFFSET NEED NOT BE ZERO.
ASSUME CS:SCURCE__SEG
EXAMPLE PROC FAR

; TH1S PROCEDURE READS AN 8-BIT PORT UNTIL

i BIT3OF THE VALUE READ IS FOUND SET T

: THEN READS ANOTHER PORT. IF THE VALUE READ

; ISGREATER THAN 10H T WRITES THE VALUE TO

; ATHIRD PORT AND RETURNS; OTHERWISE IT STARTS

: OVER.

STATUS_PORT EQU ODOH

PORT_ReADY EQU 008H

iINPUT _PORT EQU aD2H

THRESHOLD EQU 010H

OUTPUT_PORT EQU 0D4H

CHECK_AGAIN: [N AL.STATUS_PORT ; GET STATUS
TEST AL,PORT_READY ; DATA READY?
JNE CHECK_ _AGAIN ; NO, TRY AGAIN
IN AL.INPUT PORT : YES, GET DATA
CMP AL,THRESHOLD ;> 10H?
JLE CHECK__AGAIN ¢ NO, TRY AGAIN
ouT OUTPUT_PORT.AL ;YES WRITEWT

Figure 2-83. Dynamic Code Relocation Example
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RET y RETURN TO CALLER

 GET PROCEDURE LENGTH

EXAMPLE_LEN EQU {OFFSET THIS BYTE)—(OFFSET CHEGK_AGAIN)
ENDP EXAMPLE ENDP

SOURCE_SEG ENDS

TARGET_SEG  SEGMENT
; THE POSITION-INDEPENDENT PROGCEDURE
;  IBMOVEDTO THIS SEGMENT, WHICH IS
i INITIALLY "EMPTY."
s INTYPICAL SYSTEMS, A “FREE SPACE MANAGER' WOULD
+  MAINTAIN A POOL OF AVAILABLE MEMORY SPACE
; FORILLUSTRATION PURPOSES, ALLOCATE ENQUGH
SPACETO HOLD IT
DB EXAMPLE_LENDUP (%)

TARGET_.SEG  ENDS

MAIN_CODE SEGMENT

; THIS ROUTINE GALLS THE EXAMPLE PROCEDURE
 ATITS INITIAL LOCATION, MOVES IT, AND

 CALLS IT AGAIN AT THE NEW LOGATION.

ASSUME CS:MAIN_GCODE,$8:STACK,
& DS:MAIN_DATA ES:NOTHING
; INITIALIZE SEGMENT REGISTERS & STAGK POINTER.
START: MOV AX,MAIN__DATA
MOV DS.AX
MOV AX,STACK
MOV 85,AX
MOV SP,OFFSET STACK _TOP

: CALL EXAMPLE AT INITIAL LOCATION.
CALL FIP_PTH

; SET UP CX WITH COUNT OF BYTES TO MOV
MOV CX.PIP_SIZE

 SAVE DS, SET UP DS/SI AND ES/DITO

i POINT TO THE SOURGE AND DESTINATION

;.  ADDRESSES.
PUSH Ds
LES DI.FREE__PTR
LDS SLPIP_PTR
; MOVE THE PROCEDURE.
GLD TAUTO INCREMENT
REP MOVSB
s RESTORE OLD ADDRESSABILITY,
MOV AX,DS y HOLD TEMPORARILY
POP D5
; UPDATE POINTER TO POSITICN-INDEPENDENT PROCEDURE
MOV WORD PTR PIP_PTR+2,ES
suB DI PIP__SIZE 1 PRODUCES OFFSET
MOV WORD PTR PIP__PTR,DI

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)

Mnemenics & Intel, 1975 2-114



8086 AND 8088 CENTRAL PROCESSING UNITS

» UPDATE POINTER TO FREE SFACE
MOV
suB
MOV

i NEW LOCATION AND STOP

: CALL PIP_FTR
! MAIN__CODE ENDS
: END START

WORD PTR FREE_PTR+2,AX
S1,PIP_SIZE
WORD PTR FREE__PTR,5!

: PRODUCES OFFSET

: CALL POSITION-INDEPENDENT PROCEDURE AT

Figure 2-83. Dynamic Code Relocation Example (Cont'd.)

Memory-Mapped /O

Figure 2-84 shows how memory-mapped 1/0 can
be used to addtess a group of communication
lines as an ‘“‘array.’” In the example, indexed
addressing is used to poll the array of status ports,
one port at a time. Any of the other 8086/8088
memory addressing modes may be used in con-
junction with memory-mapped [/0 devices as
well,

In figure 2-85 a MOVS instruction is used to per-
form a high-speed transfer to a memory-mapped
line printer. Using this technique reguires the
hardware to be set up as follows. Since the MOVS

instruction transfers characters to successive
memery addresses, the decoding logic must select
the line printer if any of these locations is written.
One way of accomplishing this is to have the chip
select logic decode only the upper 12 lings of the
address bus (A19-AB), ignoting the contents of
the lower eight lines (A7-A0). When data is writ-
1en (o any address in this 256-byte block, the
upper 12 lines will not change, so the printer will
be selected.

If an 8086 is being used with an 8-bit printer, the
8086’s 16-bit data bus must be mapped into 8-bits
by external hardware. Using an 8088 provides a
more direct interface.

COM_LINES SEGMENT AT 800H

COM_DATA 0B ?
0B 7
COM_STATUS DB ?
DB ?
: DB 28 DUP(M
!l COM_LINES ENDS
| CODE SEGMENT

CHAR_RDY EQU 000000108
START_POLL: MOV CX. 8
sSuUB sl 8l

; THE FOLLOWING IS A MEMORY MAPPED “ARRAY"

V OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS
i (E.G., 8251 USARTS). PORTS HAVE ALL-ODD

; OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE

; IS SKIPPED) FOR B8086-COMPATIBILITY,

: SKIP THIS ADDRESS

; SKIP THIS ADDRESS
; REST OF ““ARRAY"™

; ASSUME STACK IS SET UP, AS ARE SEGMENT
; REGISTERS (DS POINTING TO COM__LINES).
3 FOLLOWING CODE POLLS THE LINES,

; CHARACTER PRESENT
; POLL 8 LINES ZERO
: ARRAY INDEX

Figure 2-84. Memory Mapped 170 **Array”’
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POLL_NEXT: TEST COM__STATUS [SI], CHAR_RDY
JE READ__CHAR ; READ IF PRESENT
ADD Sl 4 ;ELSEBUMP TO NEXT LINE
LOOP POLL__NEXT ; CONTINUE POLLING UNTIL
i _ALLBHAVE BEEN CHECKED
JMP START _POLL; START OVER
READ__CHAR: MOV AL .COM_DATA [Sl] ;GETTHEDATA
 ETC.
CODE ENDS
END

Figure 2-84. Memoty Mapped /0O “Array” (Cont’d.)

PRINTER SEGMENT

: THIS SEGMENT CONTAINS A “STRING™ THAT

+  ISACTUALLY A MEMORY-MAPPED LINE PRINTER.

i THESEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED)
» TO A BLOCK OF THE ADDRESS SPACE SUCH

i THATWRITING TO ANY ADDRESS IN THE

: BLOCKSELECTS THE PRINTER.,

PRINT_SELECT DB 133 DUP(?) ; 'STRING™ REPRESENTING PRINTER
DB 123 DUP (?) ; REST OF 256-BYTE BLOCK

PRINTER ENDS

DATA SEGMENT

PRINT_BUF 0B133 DUP {7} ; LINE TO BE PRINTED

PRINT_CQUNT DB1 ? i LINE LENGTH

: OTHER PROGRAM DATA

DATA ENDS

CODE SEGMENT

i ASBUME STACK AND SEGMENT REGISTERS HAVE
BEEN SET UP (DS POINTS TO DATA SEGMENT).
i FOLLOWING CODE TRANSFERS A LINE TO

; THE PRINTER.
ASSUME ES:PRINTER
MOV AX, PRINTER : PREVENT SEGMENT OVERRIDE
MOV ES, AX
SUB DI, DI ;s CLEAR SOURGE AND
suB Sl sl »  DESTINATION POINTERS
MOV CX, PRINT _COUNT
CLD  AUTO-INCREMENT

REP MOVS PRINT_SELECT, PRINT _BUF

.ETC.

Cooe ENDS
END

Figure 2-85. Memory Mapped Block Transfer Example
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Breakpoints

Figure 2-86 illustrates how a program may set a
breakpoint. In the example, the breakpoint
routine puts the processor into single-step mode,
but the same general approach could be used for
other purposes as well. A program passes the

that saves the byie located at that address and
replaces it with an INT 3 (breakpoint) instruction,
When the CPU encounters the breakpoint
instruction, it calls the type 3 interrupt procedure.
In the example, this procedure places the pro-
cessor into single-step mode starting with the
instruction where the breakpoint was placed.

address where the break is to occur to a procedure

INT_PTR_TAB SEGMENT
 INTERRUPT POINTER TABLE-LOCATE AT OH

TYPE_O DD ? ; NOT DEFINED IN EXAMPLE
TYPE_1 DD SINGLE_STEP

TYPE_2 DD ? ; NOT DEFINED IN EXAMPLE
TYPE_3 oD BREAKPOINT

INT._PTR_TAB ENDS

SAVE_SEG SEGMENT

SAVE _INSTR DB 1 DUP(?)  INSTRUCTION REPLACED
; BY BREAKPQINT

SAVE_SEG ENDS

MAIN_CODE SEGMENT
; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP,

: ENABLE SINGLE-STEPPING WITH INSTRUCTION AT
. LABEL "NEXT" BY PASSING SEGMENT AND _
;.  OFFSETOF "NEXT" TO "SET_BREAK™ PROCEDURE

PUSH cs
LEA AX, C5: NEXT
PUSH AX
CALL FAR SET_BREAK
 ETC.
NEXT: ™ AL, OFFFH : BREAKPOINT SET HERE
JETC.

MAIN_CODE ENDS

BREAK SEGMENT
SET__BREAK PROC FAR
: THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE
. ADDRESS IS PASSED BY THE CALLER) AND WRITES
ANINT 3 (BREAKPOINT) MACHINE INSTRUCTION
AT THE TARGET ADDRESS.

TARGET EQU DWORD PTR [BP +6]

Figure 2-36. Breakpoint Example
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} SET UP BP FOR PARM ADDRESSING & SAVE REGISTERS

PUSH BP
MOV BP,SP
PUSH DS
PUSH ES
PUSH AX
PUSH BX
i POINT DS/BX TO THE TARGET INSTRUCTION
LDS BX. TARGET
1 POINT ES TO THE SAVE AREA
MOV AX, SAVE__SEG
MOV ES, AX
 SWAP THE TARGET INSTRUCTION FOR INT 3 (OCCH)
MOV AL, 0CCH

XCHG AL, DS: [BX]
; SAVE THE TARGET INSTRUCTION

MOV ES: SAVE__INSTR, AL
1 RESTORE AND RETURN

POP Bx

POP AX

POP ES

POF D3

PCP BP

RET 4

SET_BREAK ENDP

BREAKPOINT PROC FAR

; THE CPUWILL ACTIVATE THIS PROGEDURE WHEN IT

i EXECUTES THEINT 3 INSTRUCTION SET BY THE

;  SET_BREAK PROCEDURE. THIS PROCEDURE

i RESTORES THE SAVED INSTRUGCTION BYTE TOITS

: ORIGINAL LOCATION AND BACKS UP THE
INSTRUCTION POINTER IMAGE ON THE STACK

i+ SOTHAT EXECUTION WILL RESUME WITH

;  THE RESTORED INSTRUCTION. (T THEN SETS

i TF{THE TRAP FLAG)IN THE FLAG-IMAGE

; ONTHESTACK. THIS PUTS THE PROCESSOR

i INSINGLE-STEP MODE WHEN EXECUTION

RESUMES.
FLAG_IMAGE EGU WORD PTR [BP + §]
IP_IMAGE EQU WORD PTR (BP 4 2]
NEXT_INSTR  EQU DWORD PTR [BP + 2]
+ SET UP BP TO ADDRESS STACK AND SAVE REGISTERS
PUSH BP
MOV BP, 8P
PUSH DS
PUSH ES
PUSH AX
PUSH BX
. POINT ES AT THE SAVE AREA
MOV AX, SAVE__SEG
MOV ES, AX
; GET THE SAVED BYTE
MOV AL, ES: SAVE__INSTR

Figure 2-86. Breakpoint Example (Cont'd.)
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: GET THE ADDRESS OF THE TARGET + 1
(INSTRUCTION FOLLOWING THE BREAKPOINT)

L]

LDS BX, NEXT_ INSTR
. BAGK UP IP-IMAGE (IN BX) AND REPLACE ON STACK
DEC BX
MOV IP__IMAGE, BX
. RESTORE THE SAVED INSTRUCTION
MOV DS: [BX], AL
; SET TF ON STACK
AND FLAG__IMAGE, 0100H
: RESTORE EVERYTHING AND EXIT
POP BX
: POP AX
r POP ES
; POP DS
: POP BP
IRET

BREAKPOINT ENDP

! SINGLE STEP PROC FAR

i ONCE SINGLE-STEP MODE HAS BEEN ENTERED,
THE CPU 'TRAPS" TO THIS PROCEDURE
AFTEREVERY INSTRUCTION THAT IS NOTIN

f AN INTERRUPT PROCEDURE. IN THE CASE
OF THIS EXAMPLE, THIS PROCEDURE WILL

| BE EXECUTED IMMEDIATELY FOLLOWING THE

| “IN AL, OFFFH'" INSTRUCTION (WHERE THE

BREAKPOINT WAS SET) AND AFTER EVERY

[ SUBSEQUENT INSTRUCTION. THE PROCEDURE

' COULD "“TURN ITSELF OFF'' BY CLEARING

‘ TFON THE STACK.

SING LE-STEP CODE GOES HERE.
i SINGLE_STEP ENDP

BREAK ENDS
END

Figure 2-86. Breakpoint Example (Cont’d.)

interrupt Procedures In this hypothetical system, an 8253 Program-
mable Interval Timer is used to generate a t{ime
base. One of the three timers on the 8253 is pro-
grammed to repeatedly generate interrupt

Figure 2-87 is a block diagram of a hypothetical requests at 50 millisecond intervals. The output
system that is used to illustrate three different from this timer is tied 10 one of the gight interrupt
examples of interrupt handling: an external request lines of an 8259A Programmable Inter-
{maskable} interrupt, an external non-maskable rupt Controller. The 8259A, in turn, is connected
interrupt and a soitware interrupt. to the INTR line of an 8086 or 8088,

2.119 Maamonics < Intel, 1978
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AGLO Vo BATTERY
BATTERY o5 | POWERED
coLn smm—l | - RAM
o =
POWER DOWN
CIRCUITS .
T Ts e [3
RESET MPRO pecooer]
PF1
f PFSR
{PULSE) PFS
' |
NI TR E0  E2
- R3] CTRY
BORG /B8ORS §2594 8253 PORTS
I | [}
ADDRESS BUS ! -
11 [ ! I ] [
DATA BUS
i v 1 | . i ]
CONTROL BUS )
l_—.L | I__.._A l
c5 cs
DECODER =]  EPROM DECODER - RAM

Figure 2-87. Interrupt Example Block Diagram

A power-down circuit is used in (he system to
illustrate one application of the 8086/8088 NMI
(non-maskable interrupt) line. 1f the ac line
voltage drops below a certain threshold, the
power supply activates ACLO. The power-down
circuit then sends a power-fail interrupt (PF1)
pulse to the CPU’s NMI input. After 5
milliseconds, the power-down circuit activates
MPRO (memory protect) to disable reading
from and writing to the system’s battery-powered
RAM. This protects the RAM from fluctuations
that may occur when power is actually lost 7.5
milliseconds after the power failure is derected,
The system software must save all vital informa-
tion in the battery-powered RAM segment within
5 milliseconds of the activation of NMI,

When power returns, the power-down circuit
activates the system RESET line. Pressing the
““cold start” switch also produces a system
RESET. The PFS (power fail status) line, which i3

connected (o the low-order bit of port EQ, iden-
tifies the source of the RESET. If the bit is set, the
software executes a ““warm start’’ 10 restore the
information saved by the power-fail routine. If
the PTS bit is cleared, the software executes a
“cold start’’ from the beginning of the program.
In either case, the software writes a “*one™ to the
low-order bit of port B2, This line is connected o
the power-down circuit’s PFSR (power fail status
reset) signal and is used to enable the battery-
powered RAM segment,

A software interrupt is used to update a simple
real-time clock. This procedure is written in
PL/M-86, while the rest of the system is written in
A3SM-86 10 demonstrate the interrupt handling
capability of both languages. The system®s main
program simply initializes the system following
receipt of a RESET and then waits for an
interrupt, An example of this interrupt procedure
is given in figure 2-88.
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INT_POINTERS SEGMENT
JINTERRUPT POINTER TABLE, LOCATE AT 0H, ROM-BASED
TYPE D pD ? : DIVIBE-ERROR NOT SUPPLIED tN EXAMPLE.
TYPE_1 oo ? :BINGLE-STEP NOT SUPPLIED IN EXAMPLE.
TYPE_2 oo POWER__FAIL _NON-MASKABLE INTERRUPT
TYPE__3 DD ? : BREAKPOINT NOT SUPPLIED iN EXAMPLE.
TYPE_4 oD ? T OVERFLOW NOT SUPPLIED IN EXAMPLE.
: SKIP RESERVED PART OF EXAMPLE
ORG 32-4

TYPE_32 oD ? ;82594 IR0 - AVAILABLE
TYPE__33 oD ? CR250A IR - AVAILABLE
TYPE__34 oD ?  B250A IR2 - AVAILABLE
TYPE_235 oD TIMER_PULSE , B259AIR2
TYPE_36 3]0l ?  B250A IR - AVAILABLE
TYPE__37 oD ? . BXS9AIRS - AVAILABLE
TYPE_38 jalal ? 82594 IRE - AVAILABLE

? ; 82594 IR7 - AVAILABLE

TYPE_39 DD

. POINTER FOR TYPE 40 SUPPLIED BY PL /M-85 COMPILER
INT__POINTERS ENDS

BATTERY SEGMENT

1 THIS RAM SEGMENT 15 BATTERY-POWERED. IT CONTAINS VITAL DATA
i THAT MUST BE MAINTAINED DURING POWER OUTAGES.

STACK_PTR Dw ? : SPSAVE AREA
STACK _SEG Dwy ? ;S5 SAVE AREA
1 SPACE FOR OTHER VARIABLES COULD BE DEFINED HERE.
BATTERY ENDS
DATA SEGMENT
: AAM SEGMENT THAT 15 NOT BACKED UP BY BATTERY
N PULSES DB 1 DUP (0} ;4 TIMER PULSES
JETGC.
DATA ENDS
STACK SEGMENT
;LOCATED IN BATTERY-POWERED RAM
ow 100 DUP{?%} ; THIS 1S AN ARBITRARY STACKSIZE
STAGK. _TOP LABEL WORD . LABEL THE INITIAL TOS
STACK ENDS
INTERRUPT__HANDLERS SEGMENT

1 INTERRUPT PROCEDURES EXCEPT TYPE 40 (PL/M-86)
ASSUME: CS:INTERRUFT__HANDLERS,DS:DATA S5:5TAGK ES.BATTERY

POWER_FAIL PROGC i TYPE 2INTERRUFT

- POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS
ABOUT TO BE LOST. THES PROCEDURE SAVES THE PROGESSEORSTATE IN
RAM (ASSUMED TO BE POWERED BY AN ALRULIARY SQURCE} SO THATT

. CANBE RESTORED BY A WARM START ROUTINE IF POWER RETURNS

Figure 2-88. Interrupt Procedures Example

Mnemonics = Intel, 1973
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iIP, GS, AND FLAGS ARE ALREADY ON THE STACK.
: SAVETHE OTHER REGISTERS.

PUSH B X
PUSH BX
PUSH CX
PUSH DX
PUSH Sl
PUSH u]]
PUSH BP
PUSH DS
PUSH ES

: CRITICAL MEMQRY VARIABLES COULD ALSO BE SAVED ON THE STACK AT THIS
. PQINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE ""BATTERY"
+ SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER

i IS LOST,
' BAVE $P AND 55 IN FIXED LOGATIONS THAT ARE KNOWN BY WARM START ROUTINE,
MGY AX,BATTERY
MOV ES.AX
MOV ES:STACK__PTA,SP
WMoy ES:STACK__SEG,SS
(5TOP GRACEFULLY
HLT
POWER__FAIL ENDP
TIMER PULSE PROG i TYPE 35 INTERRUPT

i THIS PROGEDURE HANDLES THE 50MS INTERRU PTS GENERATED BY THE 8253,

;. ITGOUNTS THE INTERRUPTS AND ACTIVATES THETYPE 40 INTERRUPT
PROCEDURE ONCE PER SECOND.

; DSIS ASSUMED TO BE POINTING TO THE DATA SEGMENT

;THE 825315 RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT
i REQUEST. F A DEVICE REQUIRED ACKNOWLEDGEMENT, THE CODE MIGHT GO HERE.

; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NM)J).

INC N_PULSES

: ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING
5Ti
CMP N_.PULSES, 200 +1SECOND PASSED?
JBE DONE TNQ, GO 0N,
MOV N_PULSES.0 r ¥YES, RESET COUNT.
INT 40 i UPDATE CLOCK

» SEND NON-SPECIFIC END-OF-INTERRU PT COMMAND TO 82504, ENABLING EQUAL
i ORLOWER PRIQRITY INTERRUPTS.

DONE: MOV AL, 020H ; EQICOMMAND
ouT 0COH, AL : 82594 PORT
IRET

TIMER__PULSE ENDP

INTERRUPT_HANDLERS ENDS

CODE SEGMENT

i THIS SEGMENT WOULD NORMALLY RESIDE N ROM.
ASSUME C3:CODE.DS:DATA,SS.STACK ES:NOTHING

Figure 2-88. Interrupt Procedures Exarnple (Cont'd.)
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INIT PROC NEAR

; THIS PROCEDURE IS CALLED FOR BOTH WARM AND COLD STARTS TO INITIALIZE

THE 8253 AND THE 82584, THIS ROUTINE DOES NOT USE STACK, DATA, OR

EXTRA SEGMENTS, AS THEY ARE NOT SET PRECICTABLY DURING AWARM START,
INTERRUPTS ARE DISABLED BY VIRTUE OF THE SYSTEM RESET.

:INITIALIZE 8253 COUNTER 1- OTHER COUNTERS NOT USED.
;CLK INPUT TO COUNTER 1S ASSUMED TO BE 1.22 MHZ,

LOBOMS EQU 000H VCOUNT VALUE IS
HISOMS EQuU QFQH i 51440 DECIMAL.
CONTROL EQU 0DEH s CONTROL PORT ADDRESS
COUNT_1 EQU 0D2H ; COUNTER 1 ADDRESS
MOQDEZ EQU 1101008 :MODE 2, BINARY

MOV DX,CONTROL ;| LOAD CONTROL BYTE

MOV AL MODE2

ouT OX AL

MOV OX,COUNT_1 ; LOAD 50MS DOWNCOUNT

MOV AL, LOSOMS

ouT DX,AL

MOV AL HIS0MS

ouT DX AL

:COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED.

; INITIALIZE 82594 TO: SINGLE INTERAUPT CONTROLLER, EDGE-TRIGGERED,
INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TQ CPU FOR INTERAUPT

; FAEQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-OF-INTERRUPT,

;. MASKOFF UNUSEDINTERRUPT REQUEST LINES.

1CW1 EQU o001 B ; EDGE-TRIGGERED, SINGLE 32594, ICW4 RECUIRED.
ICW2 EQU 001000008 s TYPE 20H, 32 - 40D
ICW4 EQU o0000001 B ; 8085 MODE, NORMAL EQI
ocwi EQU 111101118 i MASK ALL BUT IR3
PORT_A EQU 0C0oH  1ICW1 WRITTEN HERE
PORT_B EQU 0G2H ; OTHER ICW'S WRITTEN HERE
MOV DX ,PORT_A TWRITE 18T ICW
MOV AL, ICW
ouT OX AL
MOV DX, PORT_B s WRITE 2MDICW
MOV AL, ICwW2
ouT DX AL
MOV Al ICW4 s WRITE 4THICW
ouT DX AL
MOV AL OCWA ;MASK UNUSED IR'S
out DX, AL
JWNITIALIZATION COMPLETE, INTERRUPTS STILLDISABLED
RET
INIT ENDP
USER_PGM:

(REAL’ COLE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENDLESS LOOF
UNTIL AN INTERRUPT OCCGURS.
JMP USER_PGM

; EXECUTION STARTS HERE WHEN CPU IS RESET.
POWER_FAIL__STATUS EQU GEOH ;. PORT ADDRESS
ENABLE _RAM EQU 0E2H ; PORT ADDRESS

Figure 2-88. Interrupt Procedures Example (Cont’d.}
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 ENABLE BATTERY-POWERED RAM SEGMENT
START: MOV AL ONH
ouT ENABLE__RAM AL

 DETERMINE WARM ORCOLD START
IN AL POWER_ FAIL_STATUS

AGR AL (ISOLATE LOW BIT

JC WARM_START

GOLD__START:

+ INITIALIZE SEGMENT REGISTERS AND STACK POINTER.
ASSUME CS:CODE,DS5:CATA,58:STACK . ES:NOTHING
 RESET TAKES CARE OF CS AND(P.

MOV AX DATA

MOV DS.AX

MOV AX STACK

MOV S5,AX

MOV SP.OFFSET STACK_TOP
 INITIALIZE 8253 AND 8259A.

CALL INIT
;ENABLE INTERRUPTS

8Tl
; START MAIN PROCESSING

JMP USER_PGM
WARM__START:
INITIALIZE 8253 ANDIB259 A,

CALL INIT

1 AESTORE SYSTEM TO STATE AT THE TIME POWER FAILED
i MAKE BATTERY SEGMENT ADDRESSABLE
MOV AX BATTERY
MOV DX,AX
 VARIABLES SAVED IN THE “BATTERY'' SEGMENT WOULD BE MOVED
i BACKTOUNPROTECTED RAM NOW. SEGMENT REGISTERS AND
“ASSUME" DIREGTIVES WOULD HAVE TO BE WRITTEN TO GAIN
ADDRESSABILITY.

; RESTORE THE OLD STACK
MOV S5,DS:3TACK_SEG
MOY  SP.DS:STACK__PTR

 RESTORE THE CTHER REGISTERS

POP  ES
POP DS
POP  BP
POP DI

POP &

POP DX
POP  CX
POP  BX
POP  AX

; AESUME THE ROUTINE THAT WAS EXECUTING WHEN NMI WAS ACTIVATED.
i )LE..POPCS, P, & FLAGS, EFFECTIVELY "RETURNING" FROM THE
MMI PROCEDURE.
CODE ENDS
;TERMINATE ASSEMBLY AND MARK BEGINNING OF THE PROGRAM.
END START

Figure 2-88. Interrupt Procedures Example (Comt'd.)
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TYPES4L: DO;

DEGLARE (HOUR, MIN, SEC) BYTE PUBLIC;
UPDATESTOD: PROCEDURE INTERRUPT 40,

I*THE PROCESSOR ACTIVATES THIS PROCEDURE
*TO HANDLE THE SOFTWARE INTERRUPT
*GENERATED EVERY SECOND BY THE TYPE 35
*EXTERNAL INTERRUPT PROCEDURE. THIS
*PROCEDURE UPDATES A REAL-TIME GLOCK,
*T DOES NOT PRETEND TO BE "REALISTIC"

*AS THERE IS NO WAY TO SETTHE CLOCK."f

SEC=SEC + 1;
IF SEG = 60 THEN DO;
SEC =10
MIN = MIN + 1;
IF MIN = 80 THEN DO,
MIN = 0;
HZUR = HOUR + 1;
IF HOUR = 24 THEN DO;
HQUR = 0;
END:
END:
END,
END UPDATESTOD;
END;

Figure 2-88. Interrupt Procedures Example (Cont'd.)

String Operations

Figure 2-89 illustrates typical use of string instruc-
tions and repeat prefixes. The XLAT instruction
also is demonstrated. The first example simply
moves 80 words of a string using MOVS. Then
two byte strings are compared to find the
alphabetically lower string, as might be done in a
sort. Next a string is scanned from right to left

(the index register is auto-decremented) to find
the last period (**.”*) in the string, Finally a byte
string of EBCDIC characters is translated to
ASCIIL. The translation is stopped at the end of
the string or when a carriage return character is
encountered, whichever occurs first. This is an
example of using the string primitives in combina-
tion with other instructions (o build up more ¢om-
plex string processing operations.

ALPHA SEGMENT
- THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE

QUTPUT DwW 100 DUP{?)

INPUT DW100  DUP(?)

NAME__1 DB ‘JONES, JONA'

NAME_ 2 DB ‘JONES, JOHN'

SENTENCE DS 80 DUP(?)

EBCDIC_CHARS DB 80 DUP({?)

ASCI_CHARS DB 80 DUP(?)

CONV_TAB DB 64 DUP(OH) - EBCDIC TO ASCII

Figure 2-89. String Examples
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+ ASCHNULLS ARE SUBSTITUTED FOR “UNPRINTABLE" CHARS

ALPHA
STACK
STACK_BASE
STACK

CODE
BEGIN:

DB1 20H
[p]=R:] DUP (0H}
DB7 6,0, 0, 0, R
bB9 DUP {DH)
DB LRy e e e
DB BUP (0H}
DB 6 LR s e
DB 9 DUP (0H}
DB 17 LT @, =
0H, "a’, 'b", ‘¢’ 'g", ‘e, *p, ‘9, h, T
DB7 DUR (OH)
DBS ‘l”! ‘k’i ‘l'! ‘m'l ‘n,l ‘Ojl ‘p’! Lq'l ‘r.
DB? DUP (0H)
DBY9 =SV, W, e yL'2
DB 22 DUP (0H)
DE 10 AL CBL LD, B R G, ‘H,
DB& DUP (0H)
DB 10 S LKL MNP QR
DB6 DUP (OH)
DB 10 IUET Lot 20 A VARV W,y
Dbs DUP (OH)
DB 10 00,102,088 5 g7 g g
DB§ DUP (OH)
ENDS
SEGMENT
DW 100 DUP {7} s THIS IS AN ARBITRARY STACK SIZE
i FORILLUSTRATION ONLY.
LABEL WORD TINITIAL TOS
ENDS
SEGMENT

i SET UP SEGMENT REGISTERS. NOTICE THAT
' ES & DS POINT TO THE SAME SEGMENT, MEANING
 THAT THE CURRENT EXTRA & DATA
s SEGMENTS FULLY QVERLAP. THIS ALLOWS
+ANY STRING IN “ALPHA*" TO BE USED
1 AS A SOURCE OR A DESTINATION.
ASSUME CS: CODE, §§: STACK,
DS: ALPHA, ES: ALPHA

MOV AX, STACK

MOV §5, AX

MOV SP, OFFSET STACK_ BASE P INITIAL TOS
MOV AX, ALPHA

MOV DS, AX

MOV ES, AX

. MOVE THE FIRST 80 WORDS OF YINPUT TO
; THE LAST 80 WORDS OF “OUTPUT

LEA Sl INPUT i INITIALIZE
LEA DI, OUTPUT + 20 ; INDEX REGISTERS

Figure 2-89. Siring Examples (Cont’d.)
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MOV CX, 80 ; REPETITION COUNT
CLD ; AUTOANCREMENT
REP MOVS QUTPUT, INPUT
. FIND THE ALPHABETICALLY LOWER OF 2ZNAMES.
MOV 51, OFFSETNAME__1 ; ALTERNATIVE
MOV DI, OFFSET NAME_2 ; TOLEA
MOV CX, SIZE NAME_2 ; GHAR. COUNT
CLD i AUTOANCREMENT
REPE CMPS NAME_2, NAME_1 “WHILE EQUAL"
JB NAME_2_ LOW
NAME__1_LOW: i NOT INTHIS EXAMPLE
NAME_2_ LOW: ; CONTROL COMES HERE IN THIS EXAMPLE.

; DIPOINTS TOBYTE (*H’) THAT
; COMPARED UNEQUAL.

; FIND THE LAST PERIOD (") IN A TEXT STRING.

MOV DI, OFFSET SENTENCE +
& LENGTH SENTENCE ;START ATEND

MOV CX, SIZE SENTENCE

STD : AUTO-DECREMENT

MOV AL, ; SEARCH ARGUMENT

REPNE SCAS SENTENCE ; ““WHILE NOT ="'

JCXZ NO_PERIOD 1 IF CX=0, NO PERIOD FOUND
PERIOD: ; IF CONTROQL COMES HERE THEN

:  DIPOINTS TO LAST PERIOD IN SENTENCE.
NO_PERIOD: P ETC,

; TRANSLATE A STRING OF EBCDIC CHARAGTERS
; TO ASCIl, STCPPING IF A CARRIAGE RETURN
; {0DH ASCI) 1S ENCOUNTERED.

MOV BX, OFFSETCONV_TAB ;POINT TO TRANSLATE TABLE
MOV S|, OFFSET EBCDIC..CHARS ; INITIALIZE
MOV DI, OFFSET ASCIl_ CHARS ;. INDEX REGISTERS
MOV CX, SIZE ASCI_CHARS ;  ANDCOUNTER
CLD : AUTO-INCREMENT

NEXT: LODS EBCDIC_ CHARS ; NEXT EBCDIC GHAR IN AL
XLAT CONV_TAB ; TRANSLATE TO ASCH
STOS ASCI_CHARS ; STORE FROM AL
TEST AL, O0DH ;1S IT CARRIAGE RETURN?
LOOPNE  NEXT i NO, CONTINUE WHILE CX NOT 0
JE . CR_FOUND VYES, JUMP

; CONTROL COMES HERE IF ALL CHARACTERS
; HAVE BEEN TRANSLATED BUTNC
CARRIAGE RETURN 1S PRESENT.

| ETC.

CR__FOUND:
- DI-1 POINTS TO THE CARRIAGE RETURN
L IN ASCH__CHARS.

CODE ENDS

END

Figure 2-89. Siring Examples (Cont'd.)
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CHAPTER 4
HARDWARE REFERENCE INFORMATION

4.1 Introduction

This chapter presents specific hardware informa-
tion regarding the operation and funetions of the
8086 family processors: the 8086 and 8088 Central
Processing Units (CPUs) and the 8089 i/0 Pro-
cessor (IOP). Abbreviated descriptions of the
8086 family support circuits and their circuit
functions appear where appropriate within the
processor  descriptions. For more specific
information on any of the %086 family support
circuits, refer to the corresponding data sheets in
Appendix B.

4.2 8086 and 8088 CPUs

The 8086 and 8088 CPUs are characterized by a
20-bit (I megabyte) address bus and an identical
instruction/ function format, and differ essential-
ly from one anoiher by their respective daia bus
widths (the 8086 uses a 16-bit data bus, and the
8088 wuses an 8-bit data bus). Except where
expressly noted, the ensuing descriptions are
applicable to both CPUs.

Both the 8086 and 8088 feature a combined or
“time-multiplexed’* address and data bus that
permits a number of the pins to serve dual func-
tions and consequently allows the complete CPU
to be incorporated into a single, 40-pin package,
As explained later in this chapter, a number of the
CPU’s control pins are defined according to the
strapping of a single input pin (the MN/MX pin).
In the “‘minimum mode,”” the CPU is configured
for small, single-processor systems, and the CPU
itself provides all control signals. In the “‘max-
imum mode,”” an Intel® 8288 Bus Controller,
rather than the CPU, provides the contrel signal
outputs and allows a number of the pins pre-
viously delegated to these control functions 16 be
redefined in order to support multiprocessing
applications. Figures 4-1 and 4-2 deseribe the pin
assignments and signal definitions for the 8086
and 8088, respectively,

CPU Architecture

As shown in figures 4-3 and 4-4, both CPUs
incorporate twe separate processing units: the
Execution Unit or ““EU*’ and the Bus Interface

Unit or “BIU."”” The BU for each processor is
identical. The BIU for the 8086 incorporates a 16-
bit data bus and a 6-byte instruction gueue
whereas the 8088 incorporates an -hit data bus
and a 4-byi¢ instruction quene,

The EU is respensible for the execution of all
instructions, for providing data and addresscs to
the BIU, and for manipulating the general
registers and the flag register. Except for a few
control pins, the EU is completely isolated from
the *‘outside world.”” The BIU is responsible for
executing all external bus cycles and consists of
the segment and communications registers, the
instruction pointer and the instruction object
code queug, The BIU combines segmemt and off-
set values in its dedicated adder 10 derive 20-bit
addresses, transfers data to and from the EU on
the ALU data bus and loads or *‘prefeiches”
mstructions into the queue from which they arc
fetched by the EU.

The EU, when it is ready to execute an instruc-
tion, fetches the instruction object code byte from
the BIU's instruction queue and then execuies the
instruction. If the queue is empty when the EU is
ready o fetch an instruction byte, the EU waits
for the instruction byte 1o be fetched. In the
course of instruction execution, if a memory loca-
tion or YO port must be accessed, the EU
requests the BIU to perform the required bus
cycle,

The two processing sections of the CPU operate
independently. In the 8086 CPU, when two or
more bytes of the 6-byre instruction queue are
empty and the EU does not require the BLU to
perform a bus cycle, the BIU executes instruction
feich cycles to refill the queuve. In the 8088 CPU,
when one byte of the 4-byte instruction queue is
empty, the BIU executes an instruction fetch
cycle. Note that the 8086 CPU, since it has a 16-
bit data bus, can access 1wo instruction object
code bytes in a single bus cycle, while the 8088
CPU, since it has an 8-bit data bus, accesses one
instruction object code byte per bus cycle. If the
EU issues a request for bus access while the BIU is
in the process of an instruction fetch bus cycle,
the BIU completes the cycle before honoring the
EU’srequest.
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Common Signals

Name Function Type
Bidirectional.
AD13-AD0 | AddressiData Bus 3.5tale
B19/56- Quipud,
A16/83 Address/ Status 3-Slale
= Bus High Enablef Qutput,
BHE/ST Status 3-State
e Minimum/Maximum
MN/MX Mode Control Input
e Qutput,
RD Read Control 3-State
TEST Wait On Test Control Input
READY Wait State Controel fnput
RESET System Reset Input
Non-Maskable
NM) Interrupt Request Input
INTR Interrupt Request Input
CLK System Clock Input
Ve +5V Input
GND Ground

Minimum Mode Signals (MNIMX=Vc()

Name Function Type

HQLD Hold Request Input
HLDA Hold Acknowledge Cutput
TS ; Qutput,
WR Write Control 3State
= OQutput,
MO Memary/1O Conlrol 3-State
Data Transmit/ Qutput,
DT/R Receive 3-Slate
T Qutput,
DEN Data Enable 3.State

Address Latch

ALE Enable Output

INTA Interrupt Acknowledge Output

Maximum Mode Signals (MN/MX=GND)

Name Function Type
11 0 Request/Grant Bus ; .
RG/GT1 0 Access Control Bidirectional
—_ Bus Priority Lock Qutput,
LOCK Conlrol 3-State
&5 TR Cutput,
52-350 Bus Cycle Status 3-State

081, 030 Instruction Queus Qutput

Status

ane [t
ap1a [z
sou [ s
apiz [Ja
a0 s
avo[]s
ang 17
ape []&
a7 e
ape []1e
aps [ |1
apa ]z
ADa [13
apz ]
ap1 s
aoo [
nmi CJi7
NTR |1
cuk e

GNp 2o

8046
CPU

M vee
7] AD1s
[] aters3
[] At7/5a
] at1asss
[ ] a19/88
] 8HEs7
[ mninx
] RB

] HOLD
[] HLoa
] WR

] /0
[JoT1/h
[ ] GEN
] ALE
1 iRTA
[ TeST
] respv
] RESET

MAXIMUM MCDE PIN FUNCTIONS (8.9.,LOCK)
ARE SHOWN I PARENTHESES

Figure 4-1. 8086 Pin Definitions
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Common Signals

Name Functlion Type
Bidirectional,
AD7-ADQ Address/Data Bus 3.Gtate
_ Qutput,
Al15-A8 Address Bus 3.State
A19156- Output,
A16Ir53 Address/ Status 3-Slate
I Minimum/Maximum
MN/MX Mode Control Input
B Qutput,
RD Read Conirol 3.Slate
TEST Wait On Test Control Input
HEADY Wait State Control Input
RESET Systemn Reset Input
Non-Maskable
NMI Ierrupt Request Input
INTR Interrupt Reguest Input
CLK Bystem Clock Input
Voo +5V Input
GND Ground

Minimum Mede Signals (MN/MX=Vcc)

Name Function Type
HOLD Hold Request Input
HLDA Hold Acknowledge Qutpul
WhR Write Control g_"‘stt';"t';
1O/M (OtMemory Control g”stt%"té
= Data Transmit/ Output,
DTIR Receive 3-State
DEN Data Enable Qutput.
Address Latch
ALE Enable Output
INTA Interrupt Acknowledge Output
Output,
550 50 S1atus 3-State

Maximum Mode Signals (MN/MX = GND)

Status

Name Function Type
RQIGTT, 0 | ReguestiGrant Bus | gigirectional
—_— Bus Priority Lock Outpui,
LOCK Gontrol 3-State
T9_8h Qutpul,
S2-50 Bus Cycle Status 1.Stale

Qs1, Qso Instruction QGueue Output

aHe [
At []
anf]
a2
a1
avel]

ag[]

a8
ap7 [
aps [
aps[]
apa[]
apnz[]
a2 ]
ap1[]
aos ]
NMI[]
INTR[_]
cuk [
anp [

8088
0 CPU

af
A

k]

[ vee
] a15

[ 1 at6s58
[] a17/84
[ ] at8/58
[] a1arss
] ss¢

[ ] 0w/ A%
] Ao

] waLo
[ HLDa
] wWR

[ io/m
JoT/R
] OEN

[ ] ALE
] inTa
] TEST
] READY
[] RESET

[HIGH)

{RQ/GTO)
{RD/GT)
ILOCH}
(52)

151}

(50
0
1081}

MAXIMUM MODE PIN FUNCTIONS je.g..COTK)
ARE SHOWN IN PAREWTHESES

Figure 4-2, 8088 Pin Definitions
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Bus Operation

To explain the operation of the time-multiplexed
bus, the BIU’s bus cycle must be examined.
Essentially, a bus cyele is an asynchronous ¢vent
in which the address of an 1/0 peripheral or
memory location is presented, followed by either
a read control signal (to capture or “read” the
data from the addressed device) or a write control
signal and the associated data (to transmit or
“write™ the data to the addressed device), The
selected device {(memory or [/O peripheral)
accepts the data on the bus during a write cycle or
places the requested data on the bus during a read
cycle. On termination of the cyele, the device
latches Lhe data written or removes the data read.

As shown in figure 4-5, all bus cycles consist of a
minimum of four clock cycles or **T-states'’ iden-
tified as Ty, T, T3 and T4. The CPU places the
address of the memory location or 1/0 device on
the bus during state T. During a write bus cycle,
the CPU places the data on the bus from stare T»
until state T4. During a rcad bus cycle, the CPU
accepts the data present on the bus in states Ty

and T4, and the multiplexed address/data bus is
floated in state T3 to allow the CPU to change
from the write mode (output address) 1o the read
mode {input data).

[t is important 1o note that the BJU executes a bus
cycle only when a bus cyele is requested by the EU
as part of instruction exccution or when it must
fill the instruction queue. Consequently, clock
periods in which there is no BIU activity can
occur between bus cycles. These inactive clock
periods are referred 10 as idle states (T). While
idle clock states resull lrom several u.onclmon::
(e.g., bus access granted to a coprocessor), as an
example, consider the case of the execution of a
“long" instruction. In the following example, an
8-bit register muliiply (MUL) instruction {which
requires between 70 and 77 clock cycles) is exe-
cuted by the 8086. Assuming thal the muliiplica-
tion routine is entered as a result of a program
jump (which causes the instruction queune to be
reinitialized when the jump is executed) and, as
will be explained later in this chapter, that the
object code bytes are aligned on even-bvte bound-
aries, the BIU’s bus cycle sequence would appear
as shown in figure 4-6.

f————— pus C¥oLE |

Ty l Tz

T | Ty

BUS GYCLE —
T3

: MJDRESSX EUFFERX DATA

X&DDHESSXBUFF ER : Dath I

Figure 4-5. Typical BIU Bus Cycles

=—— BUS CYCLE
T1 Tz

6US CYCLE ==
T2 | k] | T4

£% ra rn e
[ T A Y L T A I
<4001 [P L L

g & 7

EL AZ A RESUI.T OF TI'IE JMP
LCTIVINY

DURIHG EXECUTION OF
THE JUMP.
Rk SIHCE THE QUELE |15
ACTIVITY
WTES)
AHD
COMPLETES A SECOND
EBUS CYCLE THE CHELE
CONTAINEG FOUR BYTES

EU FETCHES THE FIRST TWO BYTES FAOM THE QUEUE (THE MUL INSTRUSTHING AND
COMPLETES INSTRUCTION EXECUTION IN 70 TO 77 CLOGK GYCLES.

BlU FETCHES TWi D!.IEC"I BIU FETCHES TWO MORE | BV IS IDLE FOR 62-60 CLOCK CYCLES
EMPTY, IHE BIU FETCHES (CODE BYTES. GUEUE QBJECT CODE BYTES
EUEUE 13 NOW FULL (3

.“—IDLE CLOCE CYCLES: CVCLE |
13|r4|n|1‘| 1 |I|1T||T||Tz | T4

4 -] 10 11
ElL FETCHES THE HENT !
OBJECT CODE BYTES H
\ FROM THE GUWEUE AND

1 BEGINS EXECUTING THE

HEXT INSTRUCTHIM

BIU FETCHES TW( QBJECT
WHILE THE EUl COMPLETEE EXECUTION OF GODE BYTESTO REFILL

THE MUL INSTRUCTION, THE GUEUE. YHE QUEVE |5
(AGAIN FULL. ‘

Figure 4-6, BIU Idle States
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In addition to the idle state previousty described,
both 1he 8086 and BOSX CFUs include a
mechanism for inscrting additional T-states in the
bus cyele to compensate for devices (memory or
1/ that cannor ransfer data ar the maximum
rate. These ¢xira T-states are called wait states
(Tyw) and, when required, are insertcd between
states T3 and T,. During a wait state, the data on
the bus remains unchanged. When the device can
complete the transfer {present or accept the dara),
it signals the CPU to exit the wait state and to
enter siate Ty,

As shown in the (ollowing timing diagrams, the
actual bus cycle timing differs between a read and
a write bus cycle and varies between the two
CPUs. Note that the timing diagrams tllustrated
are for the minimum mode. (Maximum mode
liming is described later in this chapter.)

Referring to figures 4-7 and 4-8, the 8086 CPU
places a 20-bit address on the multiplexed
address/data bus during state Ty. During stare
T,, the CPU removes the address from the bus
and either three-states (floats) the lower 16
address/data lines in preparation for a read cycle
(figure 4-7) or places write data on these lines

(figure 4-8). At this time, bus cyele status s
available on the address/status lines. Buring state
Ty, bus cycle status is maintained on the
agdress/status iines and either the write data is
maintained or read data is sampled on the lower
16 address/data lines. The bus cycle is terminated
in state Ty (control lines are disabled and the
addressed device deselects from the bus),

The 8088 CPU, like the 8086, places a 20-bit
address on the multiplexed address/data bus dur-
ing state T; as shown in figures 4-9 and 4-10.
Unlike the 3086, the 8088 maintains the address
on the address lines (AIS-AS) for the entire bus
¢ycle. During stale Ta, the CPU removes the
address on the address/data lines (AD7-ADgp} and
cither floats these lines in preparation for a read
cyele {figure 4-9) or places write data on these
lines (figure 4-10), At this time, bus cycle status is
available on the address/status lines. During state
T3, bus cvele stalus is maintained on the
address/status lines and either write data is main-
lained or read data s sampled on the
address/data lines. The bus ¢ycle is terminated in
state Ty (control lines are disabled and (he
addressed device deselects from the bus),

SNF BUS &YCIE

. -  —
. T4
i |

AiSE- Ayme Sy
ane BRE(67

_)-—( aooREss, EREour X

STATUS QUT

S

ADDRESS OUT
ALE / '0.

ADy5-Alny

LOW £lQ READ. HIGH = MEMODPY AEAD

\

Figure 4-7. 8086 Read Bus Cycle
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I

GLE H \ ’ \

T2
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ONE BUS CYCLE
I 7 |
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A19' 55— REIST ERE
v BHE &7 _}—( ADDRESS, BHE QUT X
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ADqs-ADY —)—( ADDAESS OUT §

DATA DUT

LOW = N7 WRITE, HIGH = MEWMORY WHA|TE

A

WlxﬁTf

f"ll
ol
[

:

Figure 4-8. 8086 Write Bus Cycle

A majority of system memories and peripherals
reguire a stable address for the duration of the
bus cycle {(certain MCS-85™ components can
operate with a multiplexed address/data bus).
During state T of everv bus cvele, the ALE
(Address Latch Cnable) control signal is oulput
{either ditectly from the microprocessor in the
rminimum mode or indirectly through an §238 Bus
Controller in the maximum mode) (o permit the
address to be latched (the address is valid on the
trailing-edge of ALE). This **demultiplexing’” of
the address/data bus can be done remotely at
each device in the system or locally at the CPU
and distributed throughout (he system as a
separate address bus. For optimum system per-
formance and for compatibility with mulii-
processor systems or with the Intel Multibus
architecture, the locally-demultiplexed address
bus is recommended. To latch the address, Intel'™
8282 {non-inverting) or 8283 (inverting} Ocial
Latches are offered as part of the 3086 product
family and are implemented as shown in figure
4-11. These circuits, in addition 10 providing the
desired latch function, provide increased current
drive capability and capacitive load immunity.

The data bus cannot be demultiplexed due 10 the
timing differences between read and write cycles
and the varions rtead response times among
peripherals and memories. Consequently, the
multiplexed data bus either can be buffered or
used directly. When memory and 1/0 peripherals
are connected directly 1o an unbuffered bus, it is
essential that during a read cycle, a device is
prevented from corrupting the address present on
the bus during siate Ty. To ensure that the
address is not corrupted, a device’s output drivers
should be ¢nabled by an output enable function
{rather than the devices chip select lunction) con-
trolled by the CPU’s read signal. (The MCS-86
family processors puarantee that the read signal
will not be valid until after the address has been
latched by ALE.}) Many Intel peripheral,
ROM/EPROM, and RAM circuits provide an
qutput enable function to allow interface (0 an
unbuffered multiplexed address/data bus. The
alternative of using a buffered data bus should be
considered since it simplifies the interfacing
requirements and offers both increased drive cur-
rent capability and capacitive load immunity . {'he
Inmtel © 8286 (non-inverting) and 8287 (inverting)
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| CNE BU'S CYCLE
‘ T1 | Tz | T |

AIDEE - AAEISS )—( ADCOAESS OUT K STATUS OUT

Ats-Ay }—( ADDRESS OUT

e m

100 X LOW » MEMGRY READ, HIGH = VO READ

-
X
= \ [

S 1 L

Figure 4-9. 8088 Read Bus Cycle
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Octal Bus Transceivers, shows in figure 4-12, are
expressly designed to buffer the data bus. These
transceivers use the CPU's DEN (Data Enable)
and DT/R (Data Transmii/Receive) control
signals to enable and control the direction of data
on the bus, These signals provide the proper tim-
ing relationship to guarantee isolation of the
address that is present on the multiplexed bus
during state T;.

Except where noted, all subsequent discussions
and examples in this chapter assume a locally
demultiplexed address bus and a buffered data
bus. The resultant address and data buses from
the address laiches and data transceivers to the
memory and [/O devices will be referred to collec-
tively as the **system’* bus.

[ ¥
vee |—| |—| T
MNME
=] cLr: E
B2gd WH
AFE cLock |—=1 READY ] *
GENERATOR
Lo AEzET
I )
- CPY ALE ———-——————= 51H
ADDRESE ADDRESS BUS
A15-A16 sz
ADDRESS  a| 823 l. ; l
Aleda p| woRa SEL KD WA
ADDRESSIDATA
Be MEMORY 0 PERIPHERAL
_t DATA. DATA
Figure 4-11. Minimum Mode 8088 Demultiplexed Address Bus
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Figure 4-12, Minimum Mode 8086 Buffered Data Bus
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Clock Circuit

To establish the bus ¢ycle time, the CPU requires
an exiernal clock signal. As an integral part of the
8086 family, Intel offers the 8284 Clock
Gienerator/Driver for this purpose. In addition to
providing the primary (system) clock signal, this
device provides both the hardware reset interface
and the mechanism for the insertion of wait states
in the bus cycle,

The clock generator/driver requires an external
series-resonant ¢rystal input {or external frequen-
¢y source) at three times the required system clock
{requency (i.c., to operate the CPUJ at § MHz, a
15 MHz fundamental frequency source s
required). The divided-by-three outputr (CLK)
from the 8284 is routed directly (o0 the CPU's
CLK input, The clock generator /driver provides a
second ctock output called PCLK (Periphcral
Clock) at one half the frequency of the CLK out-
put and a buffered TTL level OSC (osciltator)
output at the applizd crystal input frequency,
These outputs are available for use by system
devices.

The 8284's hardware reset function is accom-
plished with an internal Schmitt (rigger circuit
that is acrivated by the RES (Reset) input. When
this input is pulled low (i.e.. a contact closure to
ground), the RESET output is activated syn-
chronously with the CLK signal. This signal must
be active for lour clock cycles and causes the CPU
to fetch and execute the instruction at location
FFFFOH. An external RC circuit is connected to
the RES input to provide the power-on reset func-
tion (on power-on, the RES input must be active
for 50 microseconds). The RESET output is
coupled directly to the RESET input of the CPEJ
as well 4s being available to svstem peripherals as
the system reset signal.

The tnsertion of wait states in the CPU's bus cycle
is accomplished by deactivating one of the 8284
RDY inputs (RDYI or RDY2). Either of these
inputs, when enabled by its corresponding AEN1
or AEN2 input, can be deactivated directly by a
petipheral device when it must extend the CPU's
bus cycle (when it is not ready to present or accept
data) or by a “‘wail state generatoer’’ circui {a
logic circuit that holds the RDY input inactive for
a given number of clock cycles).

The READY output, which is synchronized to the
CLK signal is coupled directly to the CPU’s
READY input. As shown in figure 4-13, when the
addressed device needs to inscrt one or more wait
states in a bus cvcle, it deactivates the 8284’ RDY
input prior to the end of state T, which causes the
READY output to be deactivated at the end of
state Ty. The resultant wait state (Ty,) is inserted
between states T3 and T4. To exit the wait state.
the device activaies the 8284°s RDY input which
causes the READY input 10 the CPU to go active
at the end of the current wait state and allows the
CPU to enter state Ty.

Minimum/Maximum Mode

A unique featurc of the 8086 and 8088 CPUs is
the ability of a user to define a subset of the
CPU’s control signal cutputs in order to tailor che
CPU 1o its intended system environmeut. This
“'system tailoring™” is accomplished by the strap-
ping of the CPU's MN/MX (minimum/max-
imum) input pin. Tabic 4-1 defines the 8086 and
8088 pin assignments in both the minimum and
maximum modes,

——=—————=—=———0NE BUS CYOLE
T2 |

T

CLK

RO | NPT

FEADY DUTRPUT

Ty
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Table 4-1. Minimum/Maximum Mode Pin Assignments

8086 80488
Mode Mode

Pin Pin

Minimum Maximumn Minimum Maximum
31 HOLD RG/GT0 3 HOLD RQ/GTO
30 HLDA RGJGTI 30 HLDA RG/GT
2 WR LOCK 29 WR_ LOCK
28 MID Sz 28 10/M §2
27 DT/R S 27 DT/A si
26 DEN S0 26 DEN S0
25 ALE Q50 25 ALE QS0
24 INTA Qs1 24 NTA Qs

3 SS0 High State
Minimum Mode 8-bit device, compatibility with existing

In the minimum mode {MN/MX pin strapped to
+5V), the CPU supports small, single-processor
systerns that consist of a few devices and that use
the system bus rather than support the
Multibus™ architecture. In the minimum mode,
the CPU jtself generates all bus conrol
signals (DT/R, DEN, ALE and either M/10 or
10/M) and the command output signal (RD, WR
or INTA), and provides a mechanism for
requesting bus access (HOLD/HLDA) that is
compatible with bus master rvpe controllers {e.g.,
the Intel™ 8237 and 8257 DM A Controllers).

In the minimum mode, when a bus master
requires bus access, it activates the HOLD input
to the CPU (through its request logic). The CPU,
in response to the *““hold™” request. activates
HLDA as an acknowledgement to the bus master
requesting the bus and simultaneously floats the
system bus and control lines. Since a bus request
is asynchronous, the CPU samples the HOLD
input on the positive transition of each CLK
signal and, as shown in figure 4-14, activates
HLDA at the end of cither the current bus ¢ycle
(if a bus eycle is in progress) or idle clock period.
The hold state is maintained until the bus master
inactivates the HOLD input at which time the
CPLI regains contrel of the system bus. Note that
during a “*hold*’ state, the CPU will continue 1o
execute instructions until a bus eyele is required,

Note that in the minimum mode, the 1/0-memory
control line for the 8088 CPU is the ¢converse of
the carresponding control line for the 8086 CPU
(M/1O on the 8086 and IO/M on the 8083). This
was done to provide the 8088 CPU, since it is an

MCS-85™ systems and specific MCS-85™ famity
devices (e.g., the Intel™ §155/56).

Maximum Mode

In the maximum mode (MN/MX pin strapped to
ground), an Intel™ 8288 Bus Controlier is added
10 provide a sophisticated bus control function
and compatibility with the Multibus architecture
(combining an [niel™ 8289 Arbiter with the 328§
permits the CPU to support multiple processots
on the system bus). As shown in figure 4-15, the
bus controller, rather than the CPU, provides all
bus control and command outputs, and allows the
pins previcusly delegated to these functions to be
redefined to support multiprocessing functions.

52, 57and S0

Referring to figure 4-15, the 8288 Bus Controller
uses the 82, 81 and S0 status bit outputs from the
CPU (and the 8089 IOP) 1o generate all bus con-
trol and command output signals required for a
bus cycle. The status bit outputs are decoded as
outlined in table 4-2. (For a detailed description
of the operation of the 8288 Bus Controller, refer
to the associated data sheet in Appendix B.}

The 8088 CPU, in the minimum mode, provides
an 530 status outpurt. This cutput is equivalent to
30 in the maximum mode and can be decoded
with DT/R and 10/M {inverted), which are
equivalent to S1 and 2 respectively, to provide
the same CPU cycle status information defined in
table 4-2. This type of decoding could be used in a
minimum mode B08R8-based system to allow
dynamic RAM refresh during passive CPU cycles.
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' TL0AT |
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Figure 4-14. HOLD/HLDA Timing
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Figure 4-15. Elementary Maximum Mode System
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Table 4-2, Status Bit Decoding

Status Inputs

—_ —_ — CPU Cycle 8268 Command
82 1 S0

0 0 1] inierrupt Acknowledge @_

] 0 1 Read 1/Q Port IQRC

] 1 1] Write 1/0 Port IOWC, AIOWC
0 1 1 Halt None

1 & 0 Instruction Fetch MRDC

1 ] 1 Read Memory MRDC

1 1 0 Write Memory MWTC, AMWC
1 1 1 Passive None
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RQ/GT1, RQ/GTO

The Request/Grant signal lines (RQ/GTO and
RQ/GTI) provide the CPU’'s bus access
mechanism in the maximum mode (replacing the
HOLD/HLDA function available in the
minimum mode) and are designed expressly for
multiprocessor applications using the 8089 1/0O
Processor in its local mode or other processors
that can support this function. These lines are
unigue in that the request/grant function is

accomplished over a single line (RQ/GTO
or RQ/GTI1) rather than the two-line
HOLD/HLDA function.

As shown in figure 4-16, the request/grant

sequence is a three-phase cycle: request, grant and
release. The sequence is initiated by another pro-
cessor on the system bus when it ouwiputs a pulse
on one of the RO/GT lines to request bus access
(request phase}. In response, the CPU outputs a
pulse (on the same line) at the end of either the
current bus cycle (if a bus cycle is in progress) or
idle clock period 1o indicate (o the requesting pro-
cessor that it has floated the system bus and that it
will logically disconnect from the bus controller
on the next clock cycle (grant phase) and enter a

“‘hold®’ state. Note that the CPU’s execution unit
{EL) continucs to execuie the instructions in the
queue until an instruction requiring hus access is
encountered or until the queue is empty. In the
third (release) phase, the requesting processor
again outputs a pulse on the RQ/GT line. This
pulse alerts the CPU that the processor is ready 1o
release the bus. The CPU regains bus access onits
next clack cycle. Note that the exchange of pulses
is synchronized and, accordingly, both the CPU
and requesting processor must be referenced to
the same clock signal.

The request/grant lines are prioritized with
RQ/GTO taking precedence over RQ/GTI. If a
request arrives_on both lines simultaneously, the
processor on RQ/GTO is granted the bus {the
request on RQ/GTI is granted when the bus is
released by the first processor following 4 one or
two clock channel transfer delay). Both RQ/GT
lines {and the HOLD line in minimum mode) have
& higher priority than a pending interrupt.

Request/grant latency (the time interval between
the receipt of a requesl pulse and the return of a
grant pulse) for several conditions is given intable
4-3,

T40AT)

CLE

J LA

RO/GT
COPROCESSOR REQUESTS CPL GRANTS BUS COFROCESSOR ARELEARES
BUS ACCESS TO COPROCESSOR BUS
Figure 4-16. Request/Grant Timing
Table 4-3. Request/Grant Latency
Operating Condition Request/Grant Delay
8086 3058
MNormal Instruction Processing—LOCK inactive 36 (10" clocks 310 clocks
NTA Cycle Executing—LOCK active 15 ¢locks 15clocks
Locked XCHG Instruction Processing—LOCK active 24-31 (39*) clocks 24-39 clocks

*The number of clocks in parentheses applies when the instruction being executed references a word

operand at an odd address boundary.
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Latency during normal instruction processing
(I.OCK inactive) can be as short as three clock
cycles {e.g., during execution of an instruction
thal does not reference memory) and _no more
than ten clock_cycles. Whenever the LOCK out-
put is active (LOCK is activated during an inter-
rupt acknowledge cycle or during execution of an
instruction  with a Lock prefix), latency is
increased. En the case of the execution of a locked
XCHG instruciion f{used during semaphore
examination), maximun latency is limited to 39
clock ecycles. Greaier latencies occur when a
*tong" instruction is locked. This, however, s
neither necessary nor recommended.

At the end of processor activity, the %86 or
8088 will not redirve its control and data buses
until two clock cycles foellowing receipt of the
release pulse (or two clock cyeles after HOLD
goes inactive in the minimum mede).

A Hold request is honored immediately foliowing
CPU reset if the HOLD line is active when the
RESET line gocs inactive. This action facilitates
the downloading of programs and, more
specifically, the seuting of memory location
FFITOH prior 10 CPU activation. Note that the
same result can be effected in the maximum mode
through the RQ/GT line by generaling Lhe request
pulse in the first or second clock cycle after
RESET goes inactive.

LOCK

The LOCK output is used in conjunction with an
Intel 8289 Bus Arbiter to guarantee exclusive
access of a shared system bus for the duration of
an instruction. This oulput is software controlied
and is effected by preceding the instruction
requiring exclusive access with a one byte **lock™
prefix (sge instruction set description in Chapter
2.

When the lock prefix is decoded by the EU, the
EU informs the BIU to activate the LOCK output
during the next clock cycle. This signal remains
active until one clock cycle after the execution of
the associaied instruction is concluded.

Qs1, QS50
The Q81 and QS0 (Queue Status) outputs permit

exiernal monitoring of the CPU’s internal
instruction gquewe to allow instruction ser exten-

sion processing by a coprocessor. (The
carresponding Intel 'CE modules use these status
bits during ‘‘trace’’ operaiions.) The encoding of
the Q51 and QS0 bits is shown in table 4-4,

Table 4-4. Queue Status Bit Decoding

asi |Qso0 Queue Status

0{low) 0 |Mo Operation. During the last
clock cycle, nothing was laken

from the queus,

First Byte. The byte taken from the
queue was the first byte of the
instruction.

CGueue Empty. Thz queue has
been reinitialized as a result of the
execution of & transfer instruction.

1 {high)

Subsequent Byte. The byte taken
from the queue was a subsequent
byte of the instruction.

The queue status is valid during the clock cycle
after the indicated activity has occurred.

External Memory Addressing

The 3086 and 8088 CPUs have a 20-bit address
bus and are capable of accessing ong megabyte of
memory address space.

The 808¢ memory address space consists of a
sequence of vp to one million individual bytes in
which any two consecutive bytes can be accessed
as a 16-bit data word. As shown in figure 4-17,
the memory address space is physically divided
into two banks of up to 512k bytes each.

One bank is associated with the lower hall of the
CPU's 16-bit data bus {data bits D?-D@}, and the
other bank is associated with the upper half of the
data bus {data birs D15-D8). Address bits Al2
through At are used to simultancously address a
specific byte location in both the upper and lower
banks, and the AD address bit is nof vsed in
memory addressing. Instead, AO 15 used in
memory bank selection. The lower bank, which
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ADDRESS BUS
A1g-Rq
Aq
BHE -—J
EEE————————
SEL  Ag-A1s SEL  Ao-Aag
UPFER LOWER
{00y {EVEN)
BaNK BANK
512K =B 512K x 8
Dg-DF 0g-D7
b15-Da

UPPER HALF OF CATA BUS
D7-Dy —-Lh

LOWER HALF OF DATA BUS

Figure 4-17. 8086 Memory Interface

contains even-address bytes, is selected when
A0=0. The upper bank, containing odd address
bytes (A0=1), is selected by a separate signal, Bus
High Enable (BHE). Table 4-3 defines the
BHE-AQ bank selection mechanism.

Table 4-5. Memory Bank Selection

BHE AD Byte Transferred
0{low) 0 | Beth bytes
0 1 | Upper byteto/from odd address
1 (high) 0 | Lower byteio/from even address
1 1 | None

When accessing a data byle at an even address,
the byte is transferred to or from the lower bank
on the lower half of the data bus (D7-DO). In this
case, the inactive level of the AQ address bit
enables the addressed byte in the lower bank, and
the inactive levet of the BHE signal disables the
addressed byte in the upper bank. Conversely,
when performing a byte access at an odd address,
the data byte is transferred to or from the upper
bank on the upper half of the data bus (D15-D8).
The active level of the BHE signal enables the
upper bank, and the active level of the AQ address
bit disables the lower bank.

As indicated in table 4-5, the 3086 can access a
byte in both the upper and lower banks
simuftaneously as a 16-hit word. When the low-
order byte of the word 0 be accessed is on an
even address boundary (that is, when the low-

order byte is in the lower bank), the word is said
to be *“aligned’ and can be accessed in a single
operation {a single bus cycle). As with the byte
transters previously described, address bits A9
ithrough Al address both banks, except that now
BHE is active tselecting the upper bank) and AQ is
mactlive (selecting the lower bank} to access both
bytes,

When the low-order byte of the word 1o be
accessed is on an 0dd address boundary (when the
low-order byte is in the upper bank), the word is
“*not aligned’ and must be accessed in two bus
cycles. During the first ¢ycle, the low-order byte
of the word is transferred to or from the upper
bank as described for a bytc access at an odd
address {A0 and BHE active). The memory
address is then incremenied, which causes AQ (o
shift to an inactive level (selecting the lower
bank), and a byre access at an even address is per-
formed doring the next bus eycle o transfer the
word’s high-otder byte to or from the lower bank.
The above sequence is initiated automatically by
the 8086 whenever a word access al an odd
address is performed. Also, the directing of the
high- and low-order bytes of the 80%6°s internal
word registers to the appropriate halves of the
data bus is performed automatically and, except
for the additional four clock cycles required 10
execule the secoend bus cycle, Lhe enlire operation
is transparent to the program.

The 8088 memory address space is logically
organized as a linear array of up to one million
bytes. Since the 8088 uses an 8-bit-wide data bus,
memory consists of a single bank. Address bit AO
is used to address memory, and a BHE signal is
not provided.

Word (16-bit) operands can be located at odd- or
cven-address boundaries. The low-order byte of
the word is siored in the lower-valued address
location, and the high-order byte is stored in the
next, higher-valued address location. The 8088
automatically executes two bus cycles when
accessing word operands.

1/0 Interfacing

The 808¢ and 8088 CPUs support both 1/0
mapped [/O and memory mapped 1Y/O. 1Y0
mapped 1/0 permits an 1/0 device to reside in a
separale address space (first 64k of address
space), and the standard 170 instruction set is

415
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available for device communications, Memory

anywhere ip memory and allows (he complete

CPU  instruction 8¢t 1o be wused for /G
operations,
The 8086 SUpports both 8-bit apd 16-bit 170

with either the Upper or lower half of the data
hus. (Assigning an equal number of devices (o
cach half of the data bus distributes bus loading.)
When an 170 device is assigned to the tower hajt
of the bus (D7-D0), all 1,0 addresses myst be
even (A0 equal "0, and when an I/0 device g
assigned to the upper half of the bus, all I/0
addresses musg be odd (A0 €qual ““I**). Note that
since AD always will be either an

a specific device, it cannot be used as an address
input to select i

The 8088, since jts data bus is eight bits wide, is
designed (o Support 8-bit 170 devices and places
& restrictions on odd gr even addresses.

When the 8086 or the 8088 js operated in che
minimum_mode, the CPU’s read and write com-
mands (RD and WR) are common for memory
and 10 devices. if the memory and 170 address
spaces gverlap, device selection musqt he qualified
by M/IO (8086) or 10/M (8088) (o determine if
the device s imemory or /0. This restriction does
wlhtich 1/0 and memory

the 170 and memory address spaces
overlap, device selection s determined by the
appropriate read/write command set,

Interrupts

initiated. Software interrupts originare directly
from program executiopn (i.e., execution of a
breakpainted instruction) or indirecly through

either non-maskable or
maskable, Alf interruprs, whether software of
hardware initiated, result in the transfer of con-
trol to a new pragram location,

the
pointer (1P) registers as the interrupt
routine address whep an interrupt js accepted,
Figure 4-18 Hiystrates the organization of the 256-
ENry vector tabie,

Tabla
Entry

SFE G5 255

H } B
1

Vectar 32,

Veacior

Mamory
Addiess Dediction

User Availghie

Vecior 3ty
1 Rz srved
Vecior 5
Vocror ¢ — Overfiow
Vactor 3 — Braakpodne
Vecler 2 — N

VeGtor 1 -~ Single-Sep

CS Valua — Vectoroics o
VP Valus — Vostor 1P o
7t —]

Figure 4-18, Interrupt Vector Table

88288285

Veclor 0 — Divide Ervar
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As shown in figure 4-18, the first five interrupt
vectors are associated with the software-initiated
interrupts and the hardware non-maskable inter-
rupt (NM1). The next 27 interrupt vectors are
reserved by Intel and should not be used if com-
patibility with future Intel products is to be main-
tained. The remaining interrupt vectors (vectors
32 thorugh 255) are available for user interrupt
routines.

The non-maskable interrapt (NMI) occurs as a
result of a positive transition at the CPU"'s NMI
input pin. This input is asynchronous and, in
order to ensure that it is recognized, is required to
have a minimum duration of two clock cycles.
NM! is typically used with power fail circuitry,
etror correcting memory or bus parity detection
logic to allow fast response to these fault condi-
tions, When NMI is activated, control is trans-
ferred to the interrupt service routine pointed to
by vector 2 following execution of the current
instruction. When a non-maskable interrupt is
acknowledged, the current contents of the flags
register are pushed onto the stack (the stack
pointer is decremented by two), the interrupt
enable and trap bits in the flags register are
cleared (disabling maskable and single-step inter-
rupts), and the vector 2 CS and IP address
pointers are loaded into the CS and [P registers as
the interrupi service routine address.

The CPU provides a single interrupt request input
(INTR) that can be software masked by clearing
the interrupt enable bit in the flags regisier
through the execution of a CL1 instruction. The
INTR input is level triggerad and is synchronized
internally to the positive transition of the CLK
signhal. In order to be accepted before the next
instruction, INTR must be active during the clock
period preceding the end of the current instruc-
tion (and the interrupt ¢nable bit must be set).

As shown in figure 4-19, when a maskable inter-
rupt is acknowledged, the CTPL! executes two
interrupt acknowledge bus cycles.

During the first bus cycle, the CPU floats the
address/dala bus and activates the INTA (Inter-
rupt  Acknowledge) command output during
states Ty through T4. In the minimum mode, the
CPU will not recognize a hold request from
another bus master until the full interrupt
acknowledge sequence is completed. In the max-
imum mode, the CPU activates the LOCK output
from state T of the first bus cycle until state T4
of the second bus cycle to signal all 8289 Bus
Arbiters in the system that the bus should not be
accessed by any other processor. During the
second bus cycle, the CPU again activates its
INTA c¢ommand output., In response to the

™ T3

| %
oL

LE]

+—FIRST INTERRUFT ACKNOWLEDGE BUS CYCLE —=|= " "SECOND INTERRUFT ACKNOWLEDGE BUS CYCLE |

“LOCH \

T T3 T4

|

ADy-Alp

“MAXIMLUM MODGE CNLY

VECTOR TYFE

**SEVERAL {3 TYFICAL) IDLE CLOCK STATES OCCUR BETWEEN THE FIRST AND SECOHD
INTERRUPT ACKNQWLEDGE BUS CYCLES IM THE 8086 CPU (DURING THIS INTERVAL THE
BUS 15 CRIYEMNL INTERAUFT ACKNOWLEDGE BUS CYGLES OCCUR SACK TO-BACK IN

THE @083 CPY,

Figure 4-19. Interrupt Acknowledge Sequence
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second INTA, the external interrupt sysiem {e.g.,
an intel® 8259A Programmable Interrupt Con-
troller) places a byte on the data bus that iden-
tifies the source of the interrupt {the vector
number or vector “lype’”). This byte is read by
the CPUJ and then multiplied by four with the
resultant valve used as a poinfer into the interrupt
vector table. Befare calling the corresponding
interrupt routine, the CPU saves the machine
status by pushing the current contents of the flags
register onto the stack. The CPU then clears the
mterrupt enable and trap bits in the flags register
to prevent subsequeni maskable and single-step
interrupts, and establishes the interrupt routine
return linkage by pushing the current CS and 1P
register contents onto the stack before loading the
new C8 and IP register vatues from the vector
table.

The four classes of interrupts are prioritized with
software-initiated interrupts having the highest
priority and with maskable and single-step intet-
rupts sharing the lowest priority (see section 2.6).
Since the CPU disables maskabie and single-step
interrupts when acknowledging any interrupt, if
recognition of maskable interrupts or single-siep
operation is required as part of the interrupt
routine, the routine first must set thase bits.

The processing times for the various classes of
interrupts are given in table 4-6. (These times also
are included with the 8086/8088 instruction times
cited in section 2.7.)

Table 4-6. Interrupt Processing Time

Interrupt Class Processing Time

Externat Maskable Interrupt

{(INTR) 61 clocks
Non-Maskabte Interrupt {NMI) 50 clocks
INT (with vector} 81 clocks
INT Type 3 52 clocks
INTO 53 clocks
Single Step 50 clocks

Note that the times shown in table 4-6 represent
only the time required tc process the interrupt
request after it has been recognized. To determine
interrupt latency (the time interval between the
posting of the interrupt request and the execution
of *useful” imstructions within the interrupt

routing), additional time must be included for the
completion on an instruction being executed when
the interrupt is posted (interrupts are gencrally
processed only at instruction boundaries), for
saving the contenis of any additional regiscers
prior 1o interrupt processing (interrupts
automaticatly save only CS, IP and Flags) and for
any wait states that may be incurred during inter-
rupt processing.

Machine Instruction Encoding and
Dacoding

Writing a MOV instruction in ASM-86 in the
form:

MOV destination,source

will cause the assembler to generate | of 28 pos-
sible forms of the MOV machine instruction, A
programmer rarely needs to know the details of
machine instruction formats or encoding. An
exception may occur during debugging when it
may be necessary to monitor instructions fetehed
on the bus, read unformatted memory dumps,
etc. This section provides the information
necessary 1o ranslate or decode an %086 or 3088
maching instruction.

To pack instructions into memory as densely as
possible, the 8086 and 8088 CPUs urilize an effi-
ctent coding technique. Machine instructions vary
from one to six bytes in length. One-byte instruc-
tions, which generally operate on single registers
or flags, are simple to identify. The keys to
decoding longer instructions are in the first two
bytes. The format of these byies can vary, but
most instructions follow the format shown in
figure 4-20.

The first six bits of a multibyte instruction
generally contain an opcode that identifies the
basic instruction type: ADD, XOR, etc. The
following bit, called the D field, generally
specifies the *‘direction’” of the operation: 1 = the
REG field in the second byic identifies (he
destination operand, 0 = the REG field identifies
the source operand. The W field distinguishes
between byte and word operations: 0 = byte, | =
word.

One of three additional single-bit fields, S, V or
Z, appears i some instruction formats. S is used
in conjunction with W to indicite sign extension

Mnemaonics < Intel, 1978
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of immediate fields in arithmetic instructions. V the zero flag in conditional repeat and loop
distinguishes between single- and variable-bit instructions. All single-bit field setcings are sum-
shifts and rotates. Z is used as a compare bit with marized in table 4-7.
BYTE 1 BYTE 2 _ _BYTES _ __ BYTE4 _ __ BYTES __  BYTEG_ _
|
[ i |
LOW DISP/DATA | HIGH DISP/DATA|  LOWDATA | HIGHDATA |
|
]

OPCODE nwruon REG | A/M I |

REGISTER DPERAND/EXTENSION OF OPCODE

REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH
WORD/BYTE OPERATION

DIRECTION ISTO REGISTER/DIRECTION IS FROM REGISTER
QOPERATION (INSTRUCTION) CODE

Figure 4-20. Typical 8086/8088 Machine Instruction Format

Table 4-7. Single-Bit Field Encoding

Fieid Value Function

3 No sign extension

1 Sign extend 8-bit immediate data 10 16 bits if W=1
W 0 Instruction cperates on byte data

1 Instruction operates on word dala
D 1] Instruction source is specified in REG field

1 Instruction destination is specified in REG field
v 0 Shift/ rotate count is one

1 Shift/rotate count is specified in CL register
z 0 Repeat/loop while zero flag is clear

1 Repeat/loop while zerc flag is set
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The second byie of the instruction usually jden-
tifies the instruction’s operands, The MOD
(mode) field indicates whether one of the
operands is in memory or whether both operands
are registers (see table 4-8). The REG (register)
field identifies a register that is one of the instruc-
tion operands (see 1able 4-9). In a number of
instructions, chiefly the immediate-to-memory
variety, REG is used as an extension of the
opcode to identify the type of operation. The
encoding of the R/M (register/memory) field (see
table 4-10) depends on how the mode field is sey.
If MOD = 1t (register-to-register mode), then
R/M identifies the second register operand. If
MOD selects memory mode, then R/M indicages
how the effective address of the memory operand
is to be calculated. Effective address calculation
is covered in detail in section 2.8.

Bytes 3 through 6 of an instruction are optional
fields that usually contain the displacement valye
of a memory operand and/or the actual value of
an immediate constant operand.

Table 4-8. MOD (Mode) Field Encoding

CODE EXPLANATION
00 Memory Mode, no displacement
follows*
0 Memory Mode, 8-bit
displacement follows
10 Memory Mode, 16-bit

displacemant follows
" Register Mode (no
displacement)

“Except when R/M = 110, then 16-bit
displacement foliows

Table 4-9. REG (Register) Field Encoding

REG W=0 W=1
000 AL AX
091 CL CX
¢io DL DX
0114 BL BX
100 AH SpP
101 CH BP
10 DH Si
1 BH bl

There may be one or two displacement bytes; the
language translators generaie one byte whenever
possible. The MOD field indicaies how many
displacement bytes are present. Following Intel
convention, if the displacement is two bytes, the
most-significant byte is stored second in the
instruction. If the displacement is only a single
byte, the 8086 or 8088 awlomatically sign-extends
this quantity to 16-bits before using the informa-
tion in further address calculations. Immediare
values always follow any displacement values 1hat
may be present. The second byte of a two-byte
immediate value js the most significant.

Table 4-12 lists the instruction encodings for all
80868088 instructions, This table can be used to
predict the machine encoding of any ASM-86
instruction. Table 4-13 lists the 8086/8088
machine instructions in order by the binary vaiye
of their first byte. This table can be used to
decode any machine instruction from irs binary
representation. Table 4-11 js g key to the
abbreviations used in tables 4-12 and 4-13, Table
4-14 is a more compact instruction decoding
guide,

Table 4-10. R/M {Register/ Memory) Field Encoding

MOD =11 EFFECTIVE ADDRESS CALCULATION

R/M W=0 W=1 R/M MOD =00 MOD=01 MOD=19
000 AL AX 000 {(BX)+ (SN (BX) +(SI}+ D8 (BX)+(Sl)+ D16
001 CL CX 001 1 (BX)+ (DD {BX}+ (DI} + D8 (BX)+(Dl)+ D16
010 DL ) ¢ 010 | (BPY+(SI) {BP)+(SI}+ D8 {BP) +(Sl)+ D16
o1 BL BX 011 | (BP)+ (DI} (BP)+(DI)+ D8 {BP)+{DI)+ D16
100 AH &P 100 | (s (Sh+Dg (8l)+ D186

101 CH BP 101 [ (DN (0N + D8 {Di) + D16

110 DH S! 110 | DIRECT ADDRESS (BP)+D8 (BP}+ D16

imn BH ol 111 1(BX) (BX)+D8g (8X})+ D18
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Table 4-11. Key to Machine Instruction Encoding and Decoding

IDENTIFIER EXPLANATION

MOD Mode field; described in this chapter.

REG Register field, described in this chapter.

RiM RegisterfMemory field; described in this chapter.

SR Segment register code: 00=ES, 01=C8, 10=53, 11=0S§.

W, 8 0,V2 Single-bitinstruction fields; described in this chapter.

DATA-8 8-bit immediate constant.

DATA-SX 8-bit immediate value that is automatically sign-extended to 16-bits
before use.

DATA-LO Low-order byte of 16-bit immediate constant.

DATA-HI High-order byte of 16-bit immediate constant.

{DISP-LOY Low-order byte of optional 8 or 16-bit unsigned displacement; MOD
indicates if prasent.

{DISP-H!} High-order byte of optional 16-kit unsigned displacement; MOD
indicates if present.

IP-LO Low-order byte of new IP value.

1P-HI High-order byte of new IP value

CS-LO Low-order byte of new GS vaiue.

CS-HI High-order byte of new CS value.

IP-INCE 8-bit signed increment to instruction pointer.

IP-INC-LO Low-order byte of signed 16-bit instruction pointer increment,

IP-INC-HI High-order byte of signed 16-bitinstruction pointer increment.

ADDR-LOQ Low-order byte of direct address (offset} of memory operand:; EA not
calculated,

ADDR-HI High-order byte of direct address {offset) of memory operand; EA not
calculated.

— Bits may contain any value.

XXX First 3 bits of ESC opcode.

YYY Second 3 bits of ESC opcode.

REGS 8-bit general register operand.

REG16 16-bit general register operand.

MEME 8-bit memory operand (any addressing mode).

MEM16 i6-bit memory operand {any addressing mode).

IMMEDS 8-bit immediate operand.

IMMED16 16-bit immediate oparand.

SEGREG Segment register operand.

DEST-STRS Byte string addressed by DI,
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Tabie 4-11. Key to Machine Instruction Encoding and Decoding (Cont’d.)

IDENTIFIER EXPLANATION
SRC-STRs Byte string addressed by St
DEST-STR16 Word string addressed by DI,
SRC-3TR16 Word string addressed by Sl.
SHORT-LABEL Labal within +127 bytas of instruction.
NEAR-PROC Procedure in current code segment,
FAR-PROC Procedure in another code segmernt.
NEAR-LAREL Label in current code segment but farther than -128 to +12¥ bytes
from instruction,
FAR-LABEL Labefin another code segment.
SQURCE-TABLE XLAT translation table addressed by BX.
OPCODE ESC opcode aperand.
SOURCE ESC register or memary operand.,
Table 4-12. 8086 Instruction Encoding
DATA THANSFER
MDY = Mova; TE5 43210 PES43210 Te543210 TES43210 TEBEAa3Z Tesd43z21g

Figister ' memody to i ram ragister

IMMmiechate 10 registe: fnmimo W

Imneohate W reglsler

Memary 10 sca umulato

Adrum natar o omemer ¥

Aeqisier) Memory o s EQent ragester

SEQmM&nt redasie 1o FegItlardmemcry

PUSH = Fysh:
Bemster memory
Fegister

SEQPrIETE egsier

POF = Pog;
Aegesters mamory
Aegusner

Segaen! reqistar

Teaa 10w meg ’g rim DIERLOy =0T
1140011 % [ mod 0¢0 rim 2SRy DS P-HIp Aty I dala iiw=ﬂ
T0 11 woreg ity dalaifw=1

1810000y 2ddr-ig addr-m

D100 w addr-t addr-h

TReS T 0 L mag 0 osA e {DHSP-LOY ADISP.HII
PRO D fmad 0 3R nm J iTHSP- Lk iMEP-HI
Fu Pt med 11 g e [ iDiSP-LOLAL DS P-HY —]
L N

Bddragi11a

10003040 Jwow 0 2 g um [DFS LG [ (DSP.H 7

Uloltreg

Mremonicsg - Inlel
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Table 4-12_ 8086 Instruction Encoding (Cont’d.)
DATA TRANSFER (Cont™d.}
REHG 2 Exthange. TE543240 TAS43%30 THESA43210 TESA3I10 THG5AI210 TEHSIEN0
Rt S0 @Mony with cogl ster 1000011 w| med reg rim 1DISP-LOy \DISF-H1y _]
Roactlater will aCumulator 10010 e
'™ = Inpul from;
Fixad port 11 010w DATA-S
“ariahle pon 11011 Dw
OUT = Butput la:
Fized por LI O B I B DATR-B
waratMe port LI I I B ]
XLAT = Translata bylalo AL 11014t 171
LEA = Laad €A ko registar 10001 thi| mad reg o'm NS P-LOK NSRRI
LDS = Load polnler 10 DS 11004018 +| med reg e JOISP-LOH (DISP-HY
LES m Load painter g ES 11949 ¢100| mod req r'm IDIEPLE ADHSP-HIE
LAHF = 1oad iH wih lags igd11111
SAHF = Slorg AH imgflags LR B R
PUSHF = Fugh llags 13100
POPF = Popflags 1 bbby
ARITHMETIC
AQD = Agd:
Feg memory with Tegisler 1o gilhor GO0GCO0d w | mad reg i iDISP-LO [DISP-HN
immediale 1o regulsr { mamary 10bbdbdsw [mod 080 el DIEF-LOY (OIS P-HI) dala dalaaf g w=0
ImmeduRls 19 AgC U mylalor PQODOTDw data dalailw-1
ADC = Add wilh carny:
Aeg/memory with Fedister (o glLhar DHo 1 addw | mod ey rfm IDISP-L) {DISP-HY
Immed ate 13 ragister/memany 1000008 w | mod O 1 0 riwm [DISPLO) |DESP-HI) data data it s:w=01 I
. Immedate 1o ascemulator aob10rdw data data it w=1
IHC = Inorament:
Fisgigtar memary 11111 w [ med 000 Im (DHSPLO | IS F-HIp J
!| Feglater 01 0800 e
i AAA 3 AZCH adjust for a0d peTID0 11
Tk = Dacimal adjust lar add adra0n 1
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ARITHMETIC {Coni‘d.)

508 3 Sublract:

Repimamory and regizlerio gither

! tom regi Y

Immediate iram actumutatorn

BB = Subbracy wHh Domow:
Reqfmemory and remster to aither
Immed|ais fram raqister memorny

immediaia ngm agciemuiater

BEC Dacrament.
Ragesier imemary
Regisler

NEG Changs sign

CMP = Compars:
Rngisterimemory and ragistar
Imrne dite wilh reg|stes smemory
Immediate with accumukalar
AAS ASCH adjus| for subiract
GAS Dacrmal adyu st lar subtracl
MUL Multiply dunsignad)

IMUL Integer muliply {(sigred)
AAM ASCH adpust igr sl bipry
DIV Devida funsignadi

1D Intager arade (:igredy
AAD A SCI adpust lor dlvide
CBW Convert byle 1o werd

CWO Convert word 1o double word

Eelcti

NOT Irvén

SHL/SAL Shill loguoalf an thriesic 1eft
SHA Shilt logwal nght

BAR ShiH asithrnenic nght

RAOL Rotake lelt

Table 4-12. 8086 instruction Encoding {Cont’d.)

FTE543210 76543210 76543210 TESA3210 FBAEAT10 TEGA3Z10
DRIl daw [ mod ey rim (DISP-LO {MHEPHI

10000605 w {mod 101 ¢'m [DIZP-LOn data data il 3: wadt I
G010 1 10w dala data iF w=1

40171 0dw | mod reg rm (DISP LY DS P-HI

1000 R s w | mod 01 0 i |DISF-LOY [ONEPHD daka j dataof & wedi
goc1110w dal3 detad w=1

111111 1w |mod 0 ¢ 1 eri 1DISP-LOn rDISP—HnJ

01 61 g

TT1 101 7w |mpd 911 om l |DISF-LD) (DISP-HI) ]

POV NG dw [ mog g e IDISF-LOn 1DISR-HI

1000003 w | mad T 11 i (IS P-LOY 1DISP.HIY data l data st.w-1—'
LI I I Y data

J1 11019

(LI R R IR B |

1410117 w | mod 100 am iDISF-LOL (CHSP-Hi}

11118317 wmed 101 pm IHEFLD) [DISP-HIy

iT1g10100|0s001016 {DISP.LE ITHSF-HI}

TY 1191 w | med 1 * 0 rim (ONSP-1L 0 IS F-H

11 e 1011w | mod £ 1 1 om DN P-LCh IDIEP-HI}

T1030v01Jagad01010q (DHSP.L g PH Y

10061350060

10011000

11110011 w |mog 61 0 1aim WISPLCH {DISP-HI)

TIRIDPd v w [mod 10 D eem 1DSP-LE [DISP-HI

P10 00w w [ mod 1 F 0 1Im (DHSP LOH ARG P-HN

113300 v w [ mos 1 1 1 {HGFEL (DISP-HI;

TI0T 00w |mod 040 nim WDISP-LO} iDNSFP-HI
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HARDWARE REFERENCE INFORMATION

Table 4-12. 8086 Instruction Encoding (Cont’d.)

LOGIG (Gom'd. FE5423210 TOGA3210 TR543210 78542210 78542210 TFoesas210
ROR Aotate righy TA0 I v w [mod OB 1 orrm (DISP-LE (QISP-HE

RCL Rotate throwgh carry Mag et 110100y w [ mod 00 O rim (OISP-LOH (DISP-HI:

RCR Rotate throagh Carry right 110100y w [mad 01 1 rim (RIS PLOH (DISP-HIY

AND = And:

Reglmemery with ragisler 1o adner 601 000dw |mod veg eim ADISPLO; ADISPHY

ImmGAaIE 19 regi FIerf memory 100000 0w |mad 1 09 oim IDISPLOY DISE-HI data gty il w1

I msdiate 1o gonumulalor GOYED1dw dila dalail w=1

TEST = And function to Hags me resuli;

Hegiaieqf mamory and regisier P0G 1d0dw | mod reg fim {DISP-LOY ADISPH )
Immediale data and register imamary 1111 01w |mod DO D fim {DISP-LOY {DISPHI dala ! oAty [ w=1
Immgdeate data and accumulalar 1018104 w data
OR = O
. Pagsmemgry and regisler to aithar ODO0G1THdw [mod reg rim LS PaL O (BISPHI
) Immediate 10 register! memory 10QO0a 0w [mopd d 01 rim (DISP-LON (OuESIP-HIE dath dalal w=1
i Immediate 10 ateu mulaise t0o00tiow data data il we1

YO = Enclushve or:

|! Rl esmary a0l reQester g gither DOETDR0dw [med wzg r©im 1SP-LO; LS P-HA
i I adiang 16 (agia |t Memary PO 1010w dala [DISP-LO) (CHSR-HIp data I datail w-‘J
' Immediate 1o acsurukiiar VE1 1010w dala daiaf wal
1
!
STRING MANIPULATION
REP = Finpran 1111000y
. MOVSamgug Dye! word 1018010 w
i
CMPS m Compare byle fword 1012011 w
SCASm Scan bylefword THTa1 1w
! LODE = Load Dyteiwd fg ALJAX 1910110 w
1
! STDS = Shor bytafwd trom AL{A EREREERE
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HARDWARE REFERENCE INFORMATION

Table 4-12. 8086 Instruction Encoding (Cont’d.)

CONTROL TAANSFER
GALL = Calk:

Chrezt weliiin sogment
Inchegcd within sagurnsnl

Dirgclintersegman

Indhrect inber segiment

JHP = Uneorditional Jump:
Chred | wlihin segmant
Qirect withan segment-short
indirash wiliun sagment

Direct inlersagmeng

Intitacl dersegmant

RET = Aglurmn fram CALL:

Within segmant

Within 36 adding i tmed 1o 5P

Inlergagment

Inarsegment adding immediale 19 5P

JEAIZ = Jump on squali Zars

JLAINGE = sump on @35/ not graaler or agual
JLE/ ARG = Jump on l&s8 or squalinot graaler
JBFINAE = Jump on belowdnot abava or equal
HBE/INA m Jump on below or @gqual {1l ADoye
JPFIPE m Jum pon parily ) padity aven

JO = lump on averflow

JE = Jumpan sign

JHEAINZ = Jymp on net mgualfnet zend
JHLAIGE = Jump on nel lessfgraater or equal
IHLEAJG = Jump om nct 1238 07 8quall graatar
JHB/JAE m Jump o not balaw fabave of dqual
JNBE/JA m Jump on nod below or equal! abave
JHP PO e Jymp o0 nOt pat i par agd

N0 = Jump on not avedlcw

S43290 TE543290 7ES452490 FRS54324p TE5AA210 THLHAIZIO
161000 W-INE-L O IP-NC-HI
TE1I11 4 | mad &1 0 «m {ASF-LCh |DEEF-HIp |
118610 IP-la 1P-hy
Cs&-lo GS-h
13T vy | med 011 0im HEPLE) 1DISRaHIp —l
19120 IP-ING-LO IP-ING.HI
161811 IPINCA
111111 | med 100 rim WD SP-L) (DGR HY ]
1o0rdp IP-12 (]
CE-le C5-hi
111111 | mad 101 rim DISPLOH {DISPHI) |
Goon
[ R data-lo dala-he
LE RN
ag1qgra atalo data-hl
1100100 IP-INCB
Tirtao 1PIHCE
1111148 1B INCE
110210 IP-INCH
1190 IPANCH
11188 28 e ]
1100009 IP-INCE
111000 [LB]Tw)
114181 WP-INCA
T 11 a1 P NCE
IR IR IR I | IFINCE
Tdd 1PN
119111 P-INGE
Tr1O011 IPINCE
11¢0601 IP-INCE
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HARDWARE REFERENCE INFORMATION

Table 4-12. 8086 Instruction Encoding (Cont*d.)

CONTROL TAANSFER [Cont'd.)

TES 24210 7H543270

RET = Ratura lram SALL. TEEA3210 76543210 76543210 Fé5432710
JNS = Jurngean ngl @ign a1 111001 IP-IHCA
LOOP m Loop CF imes 11100019 IF-INC3
LGOPZ /L ODPE wLoop whie zerof equal 1110000 IP-INCAH
LOOPNZLOOPHE =Loopwhie nolzeraiequal f 111 09 0 4 4 WPIHCE
JCXT = Jump on GX zamm 11109341 IP4HCA
1HT = Inlaifupl:

Type specitiad 1181140 DATA-B
Typel 11 dd1 1060

INTO = inlarru pl on overllow 11660000k
IRET=Intertupt relurn 110011

PROCESSOR CONTROL

CLC a Clear carry 1Tyt naQ
CMC=Compleman carry i {vdi0

BTG = Satcary 11T 001

CLO = Clear duresion 111111009

STDm Seldwachicn 111111091

CLI=Clgar mfarrupt 1111149319

STI=Set inkerrupl 1111141

HLT = Han 11 i b b

WAIT =il TO0Y LDk

ESC=Escape {to autemnal devicel 1101V x s |madyyytim 1DISP-LG) [DISP-HI
LOGCK =Bus otk prehx TrvionDaon
SEGMENT = Qverride preny 001vep 110

Table 4-13. Machine Instruction Decoding Guide

1ST BYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
00 0000 0000 | MOD REG R/M | {DISP-LO) (DISP-HI) ADD REGB/MEMS.REGS
m 0000 0001 | MODREG R/M | {DISP-L.O),(DISP-HI) ADD REG16/MEM16,REG16
a2 0000 0010 | MOD REG RIM | (DISP-LOD),(DISP-HI) ADD ReG8,REGS/MEMS
03 0000 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) ADD REG16,.REG16/MEM16
04 0000 Q100 | DATA-8 ADD AL IMMEDS
053 0000 4101 | DATA-LO DATA-HI ADD AX IMMED16
06 0co0 0110 PUSH ES
o7 0000 _ 0111 POFP ES
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HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide {Cont’d.)

1STBYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86¢ INSTRUCTION FORMAT

08 0000 1000 | MOD REG R/M {DISP-LO},[DISP-HI) OR REG3/MEMS,REGS

09 0000 1007 | MOD REG R/M (DISP-LO), (DISP-HI) OR REG18/MEM16, REG16

0A 0000 1010 [ MOD REG R/M (DISP-LO}{DISP-HI) OR REGB.REGS/MEMS

B 0000 1011 | MOD REG R/M {DISP-LOY,(DISP-HI) OR AEG16,REG16/MEM16

oc 0000 1100 [ DATA-8 OR AL,IMMEDS

oo 0000 1101 | DATA-LOD DATA-HI OR AX,IMMED18

0E 0000 1110 PUSH CS

OF 0o00 111 (not used)

10 0001 0000 | MOD REG R/M {DISP-LO}, (DISP-HN ADC REGS/MEMS, REGS

11 0001 9001 | MOD REG R/IM (DISP-LO),(DISP-H)) ADC REG16/MEM18,REG16

12 0001 0010 | MOD REG R/M {DISP-LOY,{DISP-HI) ADC REGS,REGB/MEMS

13 0001 0011 |MOD REG R/M (DISP-LOY},(DISP-HI) ADG REG16,REG16/MEM16

14 000t 0100 | DATA-6 ADC AL,IMMEDS

15 0001 0101 [DATA-LO DATA-HI ADC AX IMMED16

16 0001 0119 PUSH 55

17 0001 0111 POP 85

18 0001 1000 | MOD REG R/M {DISP-LO},(DISP-HI) 388 REGS/MEMS REGS

19 G001 1001 | MOD REG RfM (DISP-LO),{DISP-HI} 588 REG16/MEM16,REG16

1A 0001 1010 | MOD REG R/M (DISP-LO) {DISP-HI) SBB REGS,REGS/MEMS

18 0001 1017 | MOD REG R/M {DISP-LOL(DISP-HI) SBB REG16.REG16/MEM16

1C 0001 1100 | DATA-8 SB8 AL, IMMEDS

D 0001 1101 | DATA-LQ DATA-HI SBB AXIMMED16

1E o1 1110 PUSH Ds

1F o001 1111 POP Ds

20 0090 0000 | MOD REG R/M {DISP-LC),(DISP-HI} AND REG8/MEMS,REGS

2 0010 0001 | MOD REG R/M (DISP-LO) (DISP-HI) AND REG16/MEM16. REG1E

22 001¢ 0010 [ MOD REG R/M (DISP-LO) {DISP-Hi) AND REGSE, REGS/MEMS

23 0010 0011 | MOD REG R/M {DISP-LG}.(DISP-HI) AND REG18,REG15/MEM16

24 0010 0100 | DATA-8 AND AL IMMEDS

25 0010 0101 | DATA-LO DATA-HI AND AX,IMMED16

28 0010 0110 ES: {segment override
preiix}

27 0010 0111 DAA

28 0010 1000 | MOD REG R/M (DISP-LO){DISP-HI) sue REGB/MEMS, REGS

29 0010 1001 | MOD REG R/M {DISP-LO), (DISP-HI) SUB REG16/MEM16,REG16

24 0010 1014 | MOD REG R/M (DISP-LO), (DISP-HI} suB REGS,REGS8/ MEMS

2B 0010 1011 | MOD REG R/M (DISP-LO,(DISP-HI} suB REG16,REGI6/MEM16

26 0010 1100 | DATA-8 suB AL.IMMEDS

2D G610 1101 | DATA-LO DATA-HI suB AX IMMED16

2E 0010 1110 Cs: {segmeni ovarride
prefix}

2F 0010 1119 DAS

30 0011 0000 | MOD REG R/M (DISP-LO),{DISP-HI) XOR REGS/MEMS,REGS

3 0401 0001 | MOD REG R/ M {DISP-LO},(DISP-HI) AOR REG16/MEM16 REG16

32 0011 6010 | MOD REG R/M (DNSP-LO) {DISP-HY XOR REGS,REGE/MEMS

33 0011 0011 | MOD REG R/M {DISP-LO},(DISP-HI) XOR REG18,REG168/MEM16

34 0011 0100 | DATAB XOR AL.IMMED8

35 0011 0101 [ DATA-LO DATA-HI XCOR AX,IMMED16

J6 0011 o110 388 {segment override
prefix)
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HARDWARE REFERENCE INFORMATION
Table 4-13. Machine Instruction Decoding Guide (Cont’d.)
1ST BYTE
HEX BINARY 3ND BYTE BYTES 3,456 ASM-86 INSTRUCTION FORMAT
a7 o1 0110 AARA
a8 0011 1000 | MODREG R/M | (DISP-LO),{DISP-H1) CMP REGS/MEMS,REGS
39 0011 1001 | MOD REG R/M | (DISP-LOD),{DISP-Hi) CMP REG16/MEM18,REG16
3A 0011 1010 | MOD REG R/M | (DISP-LO),{DISP-HI} CMP REGS, REGA/MEMS
3B 00%1 1011 | MOD REG R/M | (DISP-LOL(DISP-HI} CMP REG16,REG16/MEMI6
3G 0011 1104 | DATA-S CMP AL,IMMEDS
kin) 0011 1101 | DATA-LO DATA-Hl CMP AX IMMED16
3E o1 1110 DS: {segment gverride
prefixd
ar 0011 1111 AAS
ab 0100 0000 ING AX
41 0100 00M INGC CX
42 0100 0010 INC DX
43 0100 60011 ING BX
44 0100 0100 INC 5P
45 o100 0101 INC BP
46 0100 0110 ING S
a7 0100 0119 INC ]
438 0100 1000 DEC AX
43 0100 100 DEC GX
4A 0100 1010 DEC DX
48 0100 1011 DEC BX
4G 0100 1100 DEC SP
i 4D Q100 111 DEC BP
; AE 0100 1110 DEC 51
; aF | a100 1111 DEG ¥]
i S0 0101 0000 PUSH AX
LY 0101 0001 PUSH CX
52 0101 000 PUSH DX
. 53 o101 M PUSH BX
i 54 0101 0100 PUSH SP
55 0o 0101 PUSH BP
56 101 0110 PUSH sl
: 57 4101 01y PUSH [n]l
! 58 0101 1000 POP AX
! 59 | 011 100 POP CX
5A 0101 1010 POP [9).4
58 0101 10M PGP BX
5C 0101 1100 POP SP
5D a1 1101 POP gpP
5E 0101 1110 POP Sl
5F Mt 11N POP [b]l
60 0113 0000 (not used;}
1 0110 oo {not used)
62 0110 Q010 {not used}
63 0110 0011 {not used)
64 0110 0100 {not used)
65 10 {not used)
| 66 | 0110 0110 inot used)
| 67 0110 0111 {not used)
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HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont*d.)

18T BYTE

HEX BINARY 2ND BYTE BYTES 3,4,5.6 ASM-86 INSTRUCTION FORMAT

65 0110 1000 {not used)

&9 0110 1001 {not used)

6A, 0110 1010 {not used)

68 | 0110 1011 {not used)

BC o110 1100 {not used)

&0 0110 111 {not used)

6E 0119 1110 {not used)

6F 0119 1119 {not used)

70 0111 0090 { IP-INCS3 JO SHORT-LABEL

7i 0111 000t |IPAINCE NG SHORT-LABEL

72 0111 0010 [1P-INCE JBIJNAE! SHORT-LABEL

JC
73 111 Q011 |IP-INCE JNB/JAES SHORT-LABEL
JNC

74 0111 0190 [ IP-INCE JELJZ SHORT-LABEL

75 0111 0107 [ IP-INCS JNEIJNZ SHORT-LABEL

76 0111 D110 [1P-INCB JBE/JNA SHORT-LABEL

77 0111 011 |IP-INCS JNBE/JA SHORT-LABEL

78 0111 1000 | IP-INCS Js SHORT-LABEL

7 ™11 1001 [ IP-INCS JNS SHORT-LABEL

TA 0141 1010 | IP-INC8 JPIJPE  SHORT-LABEL

7B 0111 1011 |IP-INCE JNPIJPO SHORT-LABEL

iC 0111 1100 |\P-INCS JL/IINGE SHORT-LABEL

7D G111 1101 |IP-INCS JNLAJGE SHORT-LABEL

7E 0411 1110 | IP-INCS JLE/JNG SHORT-LABEL

7F 0111 1111 | IP-INCS8 JNLE/JG BHORT-LABEL

30 1000 DOGO | MOD 000 Rt (DISP-LO) (DISP-HI), ADD REG3/MEME, IMMEDS
DATA-S

80 1000 0000 | MOD 00t R/M {DISP-LOL(DISP-HIJ, OR REG8/MEMS,IMMEDS
YATA-5

30 1000 000G [ MOD 01O R/M | {DISP-LO),(DISP-HI), ADC REGS/MEMSE,IMMEDS
DATA-3

80 1000 0000 | MOD Ot R/M {DISP-LO},(DISP-HI}, SBB REGB/MEME, IMMEDS
DATA-8

50 1000 QO0C | MOD 100 RIM {DISP-LO),({DISP-HY), AND REGS8/MEMS,IMMELS
DATA-8

80 1000 0000 | MOD 101 RIM {DISP-LO}(DISP-HI), SUB REGS/MEMB, IMMEDS
DATA-8

80 1000 00C0 | MOD 110 RIM (DISP-LO) {DISP-HI}, XOR REG8/MEME, IMMEDS
DATA-8

80 1000 0000 [ MOD 111 R/M {DISP-LO),{DISP-HI), CMP REGS/MEMSE,IMMEDS
DATA-§

a1 1000 0001 | MOD D00 R/M (DISP-LO).(DISP-HI), ADD REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MOD 00T RiM (DISP-LOL(DISP-HI, QR REG16/MEM16,IMMED16
DATA-LQ,DATA-HI

&1 1000 0061 | MODODIORIM (DISP-LO},(DISP-HI}, ADC REG16/MEM1€,IMMED16
DATA-LO,DATA-HI

8 1000 0001 | MOD 01 R/IM (DISP-LOL{DISP-HI), SBB REG16/MEM16,IMMED16
DATA-LO DATA-HI
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HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont’d )

1ST BYTE

b—— — — -

HEX EINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
81 1000 0001 | MOD 100 R/M {DISP-LO),(DISP-HI}, AND REG16/MEM16,IMMED16
DATA-LO,DATA-HI
81 1000 00H | MOD 131 BIM {DISP-LO),(DISP-HI), sUB REG16{MEMI16,IMMED14
DATA-LO,DATA-HI
81 1000 0001 | MOD 110 RIM (DISP-LOY,(DISP-HI}, XOR REG16/MEM16,IMMED1G
DATA-LO,DATA-HI
81 1006 0001 | MOD 1V RIM {DISP-LO},(DISP-HI3, CMP REG16/MEM1E, IMMEDI1G
DATA-LO DATA-HI

82 1000 0010 ( MODOOO R/M {DISP-LO) (DISP-HI}, ADD REGS!MEMB.IMMEDE
DATA-8

82 1000 D010 | MOD OO R/M {notused)

82 1000 4010 | MOD D10 RIM (DISP-LOY,(DISP-HI), ADG REGS/MEMS IMMEDS
DATA-8

82 1000 0010 | MOD 011 RIM (DISP-LO) {DISP-HI), SEB REGS/MEMS IMMEDS
DATA-B

a2 1000 0010 | MOD 100 RIM {notused)

82 1000 0010 | MOD 101 RIM (DISP-LOLL(DISP-HI), SUB REGS8/MEMS, IMMEDS
DATA-8

82 1000 0010 | MOD 110 R/M {nat used)

B2 1000 0010 § MOD 111 RIM (DISP-LOY(DISP-HI}, CMP REGS{MEME.IMMEDS
DATA-S

83 1000 0011 | MODCOO R/M | {DISP-LOY,(DISP-KI), ADD REG16/MEMI6, IMMEDS
DATA-SX

83 1000 0011 | MOD0OO1 RiM {notused)

a1 1900 0011 | MODO10RIM (DISP-LO}, {DISP-HI}, ADC REG18/ MEMI6,IMMEDS
DATA-SX

83 1000 001y | MODO11 RIM {DISP-LO},(DISP-HIY, SEB REG16/MEMI16,MMEDS
DATA-8X

83 1003 0011 | MOD 100 R/M {not used}

83 1000 0011 | MOD 101 R/IM  J {DISP-LO)(DISP-HI), SUB REG16/MEM16,IMMEDS
DATA-SX

83 1000 0011 | MOD 110 RIM (not used)

a3 1000 0011 | MOD 111 R/M (DISP-LOY,(DISP-HI}, CMP REG16/MEM16 IMMEDS
DATA-5X

84 1000 0100 | MOD REG RIM | (DISP-LO},(DISP-HI) TEST REG3/MEMB,REGS

85 1000 0161 | MOD BEG R/M | {DISP-LO) (DISP-HI} TEST REGI6/MEM16 REG16

86 1060 0110 | MOD REG R/M | {DISP-LOY(DISP-HI} XCHG REGS.REGE/MEMB

87 1000 0111 { MOD REG R/M | (DISP-LO) {DISP-HI) ACHG REGI16,REG16/MEM18

21 1000 1000 | MOD REG R/M | (DISP-LO) {DISP-HW) MOV REGS/MEMSE, REGS

89 1000 1001 | MOD REG R/M | (DISP-LO).(DISP-HI} MOV REG16/MEM16/REG16

84 1000 1010 | MOD REG R/M | {DISP-LOY.(DISP-H) MOV REGS REGS/MEME

8B 1000 1011 | MOD REG R/M | {DISP-LOY,(DISP-HI} MOV REG16,REG16/MEMIE

8C 1000 1100 | MODOSR RiM | {DISP-LO) {[HSP-HI) MOV REG16/MEM16,SEGREG

8C 100G 1100 | MOD 1—R/IM {not used)

8D 100¢ 1101 | MOD REG R/M | {DISP-LO) (DISP-HI} LEA REG16,MEM16

8E 1000 1110 [ MOD 0SR R/M | (DISP-LO)ADISP-HI} MOV SEGREG,REG16/MEM16

8E 1000 1110 | MOD 1—- R/M {not used)

8F 1040 1111 | MOD 000 R/M {DISP-LOLIDISP-HI) POP REG16/MEM1E

8F 1000 1111 | MOD 001 R/M (not used}

§F 1000 111% | MOD 010 RfM {not used)
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HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
BF 1000 1111 [MODOI1 R/M {not usedq)
8F 1000 1191 | MOD 100 R{# {not used)
8F 10000 1111 [MOD 101 R/ {not used)
8F 1000 1111 | MOD 110 R/M {not used)
8F 1000 1111 [MOD 111 R/M {not used)
0 101 0000 NOFP lexchange AX AX)
9 1001 001 XCHG AX,CX
92 1001 0010 XCHG AX DX
93 1001 0011 XCHG AX . BX
94 1001 0100 XCHG AX,5P
95 1001 01H XCHG AX,BP
96 1001 ¢110 XCHG AX, 51
97 1001 0111 ACHG AX,DI
93 1001 1000 cew
88 (1001 1001 Cwo
9A 1001 1010 | DISP-LO DISP-HI, SEG-LO, CALL FAR_PROC
SEG-HI
98 1001 1011 WAIT
G 1001 1100 PUSHF
9 (1001 1101 POPF
9E  [1607 1110 SARF
9F 1001 1111 LAHF
AD 1310 0000 | ADDR-LO ADDR-H! MOV AL MEMs
Al 101¢ 0001 | ADDR-LO ADDR-HI MOV AX MEM16
A2 1079 0010 | ADDR-LO ADDR-HI MOV MEMS, AL
A3 1010 001t | ADDR-LO ADDR-HI MOV MEM16 AL
Ad 11010 0100 MOVS DEST-STRS,SRC-STRS
AL 110 01 MOvs CEST-STR16,5RC-STR16
A6 11010 0110 CMPS DEST-STRS,5RC-STRs
A7 1010 11 CMPS DEST-STR16,SRC-STR16
A8 (1010 1000 | DATA-B TEST AL,IMMEDS
AS 1010 1001 | DATA-LO DATA-HI TEST AX,IMMED1&
AA  F1010 101D STOS DEST-STRS8
AB 1010 1011 STOS DEST-5TR16
AC 110 1100 LODS SRC-5TRs8
AD 1010 11m LCDs SRC-S8TR16
AE 1010 1710 SCAS DEST-STR8
AF (110 1111 SCAS DEST-STR1ts
B0 1011 0000 | DATA-8 MOV AL, IMMEDS
B1 1011 0001 | DATA-8 MOV CL,IMMEDS
B2 [1011 0010 | DATA-8 MOV OL,IMMEDS
B3 1011 1011 | DATA-8 MOV BL,MMEDR
B4 1011 9100 { DATA-8 MOV AH,IMMEDS
B85 |1011 0101 |DATA-2 MOV CH,IMMEDS
B& 1011 0110 { DATA-3 MQV DH,IMMEDS
B? 1011 0111 |DATA-8 MOV BH,IMMED3
B8 |1011 1000 [DATA-LO DATA-HI MOV AX IMMED16
B9 1011 1001 | DATA-LO DATA-HI MOV CX.IMMED16
BA 1011 10710 | DATA-LQ DATA-HI MoV DX, IMMED16
BB 1011 1011 | DATA-LO DATA-HI MOV B, IMMED16
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HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide {(Cont’d.)

15T BYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
BC 1011 1160 | DATA-LO DATA-HI MOV SP,IMMED16
BD 1011 1131 | DATA-LO DATA-HI MOV BP,IMMED16
BE 1011 1110 | DATA-LO DATA-HI MOV SLIMMED16
BF 1011 1111 | DATA-LO DATA-HI MOV . IMMED16
Co 1100 0004 {not used)
1 1100 001 {not used)
c2 1od 0010 | DATA-LO DATA-HI RET IMMED16 (intraseg)
c3 1100 0011 RET {intrasegment)
C4 100 00 | MODREG R/M | (DISP-LO},(DISP-+1} LES REG16, MEM16
Ch 1Y) 11 | MODREG R/M | {DISP-LO),(DISP-HI} LDS REG16,MEM18
CB 110¢ 010 | MODDOO R/M {DISP-LO),(DISP-HI}, MOV MEME,IMMEDS
DATA-S
(w!;) 1100 0110 (MOD D01 R/M (notused?
CB 1100 0110 {MOD D10 RIM (notusad)
Ch 1100 0130 | MOD 011 RiIM (not used}
Ca 1106 040 [ MOD 100 R/M (not used}
Cs 1100 Q110 (MOD 101 R/IM {noctused)
C6 100 0110 [MOD 110 R/IM {notused)
C6 1400 0110 |MOD 111 RiM {notused)
Cc7 1100 0111 [MOD OO0 B/M (DISP-LO){DISP-HI), MOV MEM16,IMMED16
DATA-LQ,DATA-HI
c7 1100 0111 |MOD D01 RIM {nctused)
Cc7 1100 0111 |MOD OO R/M {notusged)
c7 1100 0111 | MOD 011 RiIM {notused)
c? 100 o111 {MOD 100 R/M {notused)
C7 1100 0111 (MOD 101 R/IM {nctused)
cr 100 0111 |MOD 110 RiM {not used)
C7 1108 0111 | MOD 111 RiM {not ssed
cs 1100 1000 {not used)
Ca 1100 1001 {notused)
CA 100 1010 | DATA-LO DATA-HI RET IMMED16 (intersagment}
cB 1100 1011 RET (intersegment}
cC 1100 1100 INT 3
CD 1100 1101 { DATA-8 INT \MMEDS
CE 1100 1110 INTO
CF 1100 1111 IRET
Do 1101 0000 | MOD DOC R/M {DISP-LO),(DISP-HI) RCL REGS/MEMS 1
Do 1191 Q000 | MOD D01 RfM (DISP-LO),(DISP-HIY ROR REGS/ MEMSB1
Do 11 0000 | MODOMOR/M (DISP-LO),(DISP-HI) RCL REGB{MEMS1
DO 1101 0000 |MODOI1 RIM (DISP-LO),(DISP-HI) RCR REGB/MEMS 1
Do 1101 0000 (MODI0ORIM (DISP-LO},(DISP-HI) SAL{SHL REGS/MEMSA
Do 1101 0000 | MOD 101 RiIM {DISP-LO),(DISP-HI} SHR REGE/MEMSE A
Do 1101 0000 | MOD 110 RIM {not used)
Do 1101 4000 | MOD 11T R/M {DASP-LOY, (DISP-HI SAR REG&/MEME 1
()] 111 4001 | MODODO RIM {DISP-LO}L(DISP-HI} ROL REG16/MEM18 1
(5} ] 1101 Q001 [ MOD D01 R/M {DASP-LOL(DISP-HIY ROR REG16/MEM18,1
1] 1101 0001 |MODOIORIM {DASP-LOn, (DISP-HI} RCL REG16/MEMI1G,1
D 1101 Q001 | MOD D11 R/M {DISP-LO),(DISP-HIY RCR REG16/MEMIi61
0] M1 0001 [ MOD 100 R/M {DISP-LO), (DISP-HI) SAL/SHL REG16/MEM1B1
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Table 4-13, Machine Instruction Decoding Guide (Cont'd.)

1STBYTE
HEX EINARY 2NDBYTE BYTES 3.4,5,6 ASM-86 INSTRUCTION FORMAT
M| 1101 000t |MOD 101 RiM {DISP-LO),(DISP-HI) SHR REG16/MEM16,1
o o1 6001 |[MOD 110 R/M {not used)
(0] 101 Q001 [MOD 111 RIM (D!SP-LO}L{DISP-HI) SAR REG16/MEM16,1
D2 1101 0010 | MOD 000 RiM (DISP-LO) {HSP-HI} ROL REGB/MEMS,CL
02 101 0010 [ MOD 001 RIM {DISP-LO},(DISP-HI) ROR REGE/MEMS.CL
D2 111 010 [MOD 010 RIM (DISP-LO) {DISP-HI} RCL REGS&/MEMS,CL
0z o1 0010 | MOD 011 RiM {DISP-LO}(DISP-HI) RCR REGS/MEMS, CL
D2 1101 0610 | MOD 100 R/ (DISP-LO),{DISP-HI) SAL/SHL REGS/MEMS,CL
D2 M 0010 [ MOD 101 RIM {DISP-LO) {DISP-Hi) SHR REG8/MEMSB,CL
D2 1101 0010 | MOD 110 R/ M (not used)
Dz 101 0010 | MOD 111 RiM (DISP-LO),(DISP-HI) SAR REGS/MEMSB,CL
D3 111 0011 | MOD 000 R M (DISP-LO},(DISP-HI} ROL REG16/MEM186,GL
D3 110 0011 [ MOD 001 R/M (DISP-LO),IDISP-HI) ROR REG16/MEM16.CL
D3 1 0011 |MOD 010 RIM {DISP-LO) (DISP-HI} FCL REG16/MEMI16,CL
D3 1101 0011 [ MOD 011 R/M (DISP-LO), (DISP-HI RCR REGI6/MEM16,CL
D3 1101 0011 | MOD 100 R/ M (DISP-LOL(DISP-H} SALISHL REG16/MEMI1B,CL
D3 1101 0011 | MOD 10T R/M (DISP-LO),IDISP-RI) SHR REG16fMEM16,GL
D3 110 011 { MOD 110 R/M (notused)y
D3 1101 001 1 | MOD 111 R{M (DISP-LO)L{DISP-HIy SAR REG18/MEM16,CL
D4 1101 (100 | 00001010 AAM
D5 1101 0101 | 00001010 AAD
D6 o1 0110 (not used)
D7 "t o119 ALAT SOURCE-TABLE
D8 1101 4009 |MOD Q00 RIM
XXX |MOD ¥YY R/iMm (DISP-LOY, (DISP-HN) ESC OPCODE,SOURCE
DF 161 111 |MOD 111 RiM
ED 1110 0000 | IP-ING-8 LCOOPNE! SHORT-LABEL
LOOPNZ
E1 111G 0001 | IP-INC-§ LOOPE/ SHORT-LABEL
LOOPZ
E2 1110 001Q | IP-INC-8 LOOP SHORT-LABEL
E3 1110 0011 | IP-ING-8 JCAZ SHORT-LABEL
E4 1110 0100 [ DATA-S IN ALIMMEDS
ES 1110 0101 | DATA-8 IN AX IMMEDS
E6 110 0110 [ DATA-S ouT AL, IMMEDS
E7 1110 0111 | DATA-§ cuT AXIMMEDS
ES 110 1000 [ IP-INC-LO IP-INC-HI CALL NEAR-PROC
E9 10 1001 [IP-ING-LO IP-INC-Hi JMP NEAR-LABEL
EA 1110 1010 [ IP-LO IP-HI,CS-L0,CS-HI JMP FAR-LABEL
EB 1110 10%1 | IP-INCS JMP SHORT-LABEL
EC 1110 1100 IN AL, DX
ED M 1 IN AX,DX
EE 1110 1110 ouT AL.DX
EF 1110 1119 ouT AX,DX
FO 1111 0000 LOCK {prefix)
F1 1117 0001 {not useqg)
F2 1111 0p10 REPNE/REPNZ
F3 1111 0011 REP/REPE/REPZ
Fd 1117 0100 HLT
F5 1111 0101 CMC
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

15T BYTE

HEX EINARY 2ND BYTE BYTES 3,456 ASM-26 INSTRUCTION FORMAT

F& 1111 0110 | MODOBO RIM (DISP-LOY{DISP-HI}, TEST REGS/MEMS IMMEDS
DATA-B

F& 1111 0110 | MOD0D1 RIM {not used)

F& 1111 0110 | MOD RO RIM {DISP-LO}L(DISP-HIY NOT REGS/MEMS

F& 1111 0110 | MOD M1 RIM (DISP-LOY(DISP-MI} NEG REGS/MEMS

F& 1111 0110 | MOD 100 RfM {DISP-LO}(DISP-HI} MUL REGS/MEMS

F§ 1111 0110 [MOD 101 R/IM {DISP-LO),({DISP-H1) IMUL REGS/MEMS

Ffi 1111 0116 | MOD 1D RIM (DISP-LO)(DISP-H) DIV REGS/MEMSE

F& 1111 0114 |MOD 111 RIM (DISP-LO),(DISP-HE) 1DV REGS!MEMS

F7 1111 11 | MOD OO0 B/M {DISP-LO),(DISP-HL), TEST REG18/MEM16,IMMED16
DATA-LO,DATA-HI

F7 111 0111 | MOD O RIM {notused)

F? 11411 0111 [MODO10R/M {DISP-LO}.(DISP-HI) NOT REG16/MEM1E

F7 1111 0111 | MOD 011 RIM (DISP-LO).(DISP-HY NEG REG16{MEMIE

F7 1111 0111 | MOD 130 RIM {DISP-LO}LDISP-HI) MUL REGIG/MEM16

F7 1111 0111 | MOD 1 RIM {DISP-LO},(DISP-HI} IMUL REG16/MEM1E

F7 111 0111 |MOD 1D RIM (DISP-LO),(DISP-HI) DIy REGI&{ MEM1E

F7 M1 0111 |MOD11T RIM (DISP-LO),(DISP-HK 1DV REG16/MEM16

F8 1111 1000 CLC

F9 1111 1001 STC

Fa 1111 1010 GLI

FB 1111 1011 sTI

FC 1111 1100 CLD

FD 11911 11 sSTD

FE 1111 1110 [ MOD 000 R/M {DISP-LO),(DISP-HI) ING REGS{MEMS

FE 1111 1110 | MOD O RIM (DISP-LO),(DISP-H1} DEC REGS/MEMS

FE 1111 1110 [MOD MO R/M {not used}

FE 1111 1110 | MOD 011 RIM {not uged}

FE 1111 1110 | MOD 100 RfM (not used)

FE 1111 1140 | MOD 101 RIM {inot used)

FE 111 1110 | MOD 110 R/M {not usad)

FE 1111 1110 | MOD 111 RIM {notused)

FF 111 1911 | MOD Q00 RIM {DISP-LO)Y {DISP-HI) INC MEM16

FF 1111 1111 | MOD O RiM | {DISP-LO),[DISP-HI) DEC MES1E

FF 1111 1111 | MODO10RIM {DISP-LD) {DISP-HI) CALL REG16/MEM16 {intra)

FF 111 1111 |MODO11 R/IM {DISP-LO),(DISP-HI) CALL MEMI1B (intersegment)

FF 1111 1111 | MOD100 R/M {DISP-LO) {DISP-HD JMP REG16/MEMIE {intra)

FF 1111 1111 | MOD 101 RiM {DISP-LO) {DISP-HI) JMP MEM16 {intersegment)

FF 1111 1911  MOD 110 RIM {DASP-LO), [DISP-HIy PUSH MEMIE

FF 111 1111 |MOD 111 BRIM (notused}
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Table 4-14. Machine Instruction Encod ing Marrix

Lo
i 0 ! 2 3 1 i85 7 B 9 A ] £ 0 £ P
Q ADD aDD AGD Ao ADD ADD PUSH POF OR R IR (R O OA FLSH
bLeim fwlrim b bliim | weieim | 0oa wla ES ES birim | wiheim | oteim | wieim b i C5
L ADC ADC ADL ADC ADC ADC PUSH FOF il ] SBB SBR SBB ] SER PUSH POP
blrim L wieim | Bteim | wirim ba w1 5 55 |otrim | wiiim | bieim | warim b Wi 05 0%
2 AND ANG AND AND AND AND SER Y =N SUB Sub sud 5UB suB SEG DAS
brrim bwioim | bloim | wtirm b Wi =£5 Bicim | wicim | baeim | wicm b wi (5 ]
3 X¥OR XOR XOR A0R X{R xR SEG AR CHP CMP CMP CMP CMP CMF SEG ALS
bleim Jwivim | bteim | witem bi w.l -55% bArdm | w.fremp aeim | wirim h W 05 |
1 ING ING INC ING INC INC INC [l DEC DEC DEC CEC DEC DEC DEC | DEC
X Gx i BX SP BP ] ] A, X bk EES SP BP )
5| PUSH | PUSH | PUSH | PUSH | PusH | PUSH | PUSH | PUSH | Pop | PP ] rop | FOP | POF | POP | PoF | por
AX cx BX BY s gp 5l ] AN ocx | oo BX SP BP 8l fi
|

7 Joo | NBf ] uEr | mMEr | dees | Jmeer e [oumpe | UL | NG| JLEF | aeEr
Sl W A AT 2 LNz | wna | T B S o | o | onee | e | e |

4| Immet | immed | immed | tmmed | TEST TEST XGHG LCHE Moy Moy MY MOy Moy LEA MOV POP

brim | wrfim | brim sAim ] brdm | owoim | boim | weim |[Bhefm o wloim | brefm | wirim arl.im AR T
9 XCHG XCHG XCHG XCHG XLHG ¥CHG XCHG ACHG CALL
X tx o BY 3p P gl o CBW Cwo 4 wair PLEF PDfF SAHF | LAHF
A MoV MOV MOy MOy TEST TEST SCAS
m - ALlm - hx|AL - m| ax - | MOVS | MOVE | CMPS EPS_ b l.a wia | $T0S | 8TOS | LODS | LoOS SCAS
8 MoV MOV¥ MOV Moy MOV MOy MY L Moy MDY MoV MO MOy MDY Moy
P—AL J v —CLii—DBL[ 1 =BL It ~aH[iwcCH]|r ~DH P -BH [P AN e oCX | —Dx [ —Bx |~ 8F 1~BPF[ =31 |1 =D
t RET, MOV | Mo RET ' HET INT [
, wsp | PET | LES oo | R LS| T | Typed | qhay | NTO | RET
0| St Shtl Shift Shift E5C ESC ESC ESC ESC ESC £5¢ 3
v | w by W AAM ARD LAY I 1 F 3 i 5 5 ?—
E | LODPNZ/] LO0PZ/ wor | yoxz IN N ouT outT | Ccall JWP JMF JHP ] N outr our
LOOPNE | LOOPE | b w b w g | o 14 s1d wb Ll v.b v
F AEP Gp U | Grp1 | GpZ | Gip2
wch | PP e fome [ RS we st | oo | osm | oo | sio AR B
where
modl _Jrom [ 000 o [ [N 109 1) il 11
immed | ADD R AOC | SBE | ame  [suB | uor | ewe
Sl ROL | RoR | ACL | RCR | SmLssal | Sem - (3]
[ Gl TEST — L1} NEG ML 1ML Doy DIV
Gip 2 INE OEC [ AL | calL| uMe MR | fusA Z
d Ld " Lid
b = byle operaban m = memory
d = diracl rim - EA is second byte
I = trom CPU reg Si = short intrasegmen
i = immediate 3 - segment requsler
i2 = immed (9 accum, 1 - 10 CPU rag
id - indiregt ¥ = variable
5 = immed. byte, sign exi. W = word operalion
I - long e intersegment Z=1remn
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8086 Instruction Sequence

Figure 4-22 illustrates the internal operation and
bus activity that occur as an 3086 CPU executes a
sequence of instructiens. This figure presents the
signals and timing relationships that are impor-
tant in understanding 8086 operation. The follow-
ing discussion 15 intended te help in the interpreta-
tion of the figure.

Figure 4-22 shows the repeated execution of an
mstruction loop. This loop is defined in both
machine code and assembly language by figure
4-21. A loop was chosen both to demonstrate the
effects of a program jump on the queue and to
make the instruction sequence easy to follow. The
program sequence shown was selected for several
reasons. First, consisting of seven imstructions
and 16 bytes, the sequence is typical of the tight
loops found in many application programs.
Second, this particular sequence contains several
short, fast-executing instructions that
demonstrate both the effect of the queue on CPU
performance and the interaction between the exe-
cution unit (EU) fetching code from the queue
and the bus interface unit (BIU) filling the queue
and performing the requested bus cycles. Lasi,
for the purpose of this discussion, code, stack,
and memory data references were arranged to be
aligned on even word boundaries.

ASSEMBLY LANGUAGE MACHINE CODE

MOV AX, OF802H BR02F8
PUSH AX 50

MOV CX, BX 8BCB
MOV DX, CX 8B
ADD AX, {SI 0304
ADD §I, 8086H 81C68680
JMP § —14 EBFO

Figure 4-21. Instruction Loop Sequence

Figure 4-22 can be more easily interpreted by
keeping the following guidelines in mind.

8 The queue status lines (QS0, QS1) are the key
indicators of EU activity.

*  Status lines S2 through SO are the main
indicators of 8086/8088 bus activity.

¢+ Interaction of the BIU and EU is via the
gueue for prefetched opcodes and via the EU
for requested bus cycles for data operands,

Keeping these guidelines in mind, the instruction
sequence depicted in figure 4-22 can be described
as follows. Starting the loop arbitrarily in clock
cvecle 1 with the queue reinitialization (hat occurs
as part of the JMP instruction, JMP instruction
execution is completed by the ELU), while the BIU
performs an opcode fetch o begin refilling the
queue. {Note that a shorthand notation has been
used in the figure to represent the two queue
status lines and the three siaws lings—active
periods on any of these lines are noted and the
binary value of the lines is indicated above gach
active region.)

In clock cycle 8, the queue status lines indicate
that the first byte of the MOV immediate instruoe-
tion has been removed from the queue (one clock
cycle after i1 was placed there by the BIU fetch)
and that execution of this instruction has begun.
The second byte of this instruction is taken from
the queue in clock cyele 10 and then, in ctock
cycle 12, the EU pauses (o wail one clock cycle for
the BIU’s second opcode fetch to be completed
and for the third byte of the MOV immediate
instruction (o be  available for execution
(remember the queune siatus lines indicate queue
activity that has occurred in the previous clock
cycle).

Clock cycle 13 begins the execution of the PUSH
AX instruction, and in clock cycle 15, the BIU
begins the fourth opeode fetch. The BIU finishes
the fourth feich in clock cycle 18 and prepares for
another fetch when it receives a request from the
EU for a memory write {the stack push). lnstcad
of completing the opcode fetch and forcing the
EU to wait four additional clock cycles, the BiU
immediately aborts the fetch cycle {resulting in
two idle clock cycles (Ty) in clock cycles 19 and
200 and performs the requived memory write. This
interaction between the EU and BIU resulis in a
single clock extension to the execution time of the
PUSH AX instructien, the maximum delay that
can occur in responsc to an EU bus cycle request.

Execution continues in clock cvcie 24 with the
execution of back-lo-back, register-eo-register
MOV instructions. The first of these instructions
takes full advantage of the prefetched opcode o
complete this operation in two clock cycles. The
second MOV instruction, however, depletes the
queue and requires two additional clock cvcles
{¢lock cycles 28 and 29).
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Table 4-14. Machine Instruction Encoding Matrix

Lo
Hi 1 | H 3 4 b 13 T .} Ll A B ¢ '] E ¥
0] ADD RDD ADD ADD ADD ADD PUSH FOF OR OR OR il OR [z FUSH
bferm | wieim| btrim | wirm | baa W a ES ES |birim [wirim | brrfm | wieim bt Wl o]
1 ADG ADC ADG ADG ADC ADT PUSH FOP SBR SEB SB8 SBE SBE BB PUSH POP
pfm | winim | btrim | wirim b Wi 55 55 blerm [wheim [ BLefm | wileim ba w. D5 2]
? AND AND AND AND AND AND SEG BAA SUB s5uB SUB sup SUH Sug SEG bag
bhifm | wirim| &trim| wirim b.i Wi -E5 blrim |wlrim ] BLirm | wliim b.i w1 -C5
3 X0R ¥R XOR X0R 1OR 0R SEC Abd LMP GMP CME LM CME Chp SEG Iy
blifm | wheim| birim | wirim ba Wl -88 parim | wirfm | pirim | wlefm bui wi 08
4 INC NG INC INT ING INC INC INC DEC DEC BEC DEC QOEC DEC DEC DEC
Al X L% X 3P BF El Dl AX CX DX :  EX SP BF S DI
5 PUEH PUSH PUSKH PUSH PUSH FUSH PUSH PUSH PP POP POP | P Fixp i PR FOP
AX [ 0X X 5P BF S Dl A Cx by | &x 4 BP L]l o]}
8 :
—_ _— e — 1 - ——— | !
1 Jay JnEt JE: JNE/ JBEF JNBE! B INR! Jut JHL/ JLE/ JHLES
O] w0 | e | ek |z | e | owa | Toa [ 98 ] S | Gee | Tee | awee | ugE | N | a6
8 | Immed | mmed | mmed | Immed | TEST TEST FCHG AGHG MOV MOV My MOy WOV LEA MY FQF
pa/m | owr/mo | bodm isofm | rim | woim | obom [ owerm [beim Jwinm | oem | warim |oselem i\ m m
[ ¥CHE XCHG XCHG ACHG XCHG XCHG XCHG XCHG CALL
I X b X ép ge gl i Cow WD 13 WAIT PUSHF | POFF SAHF LARF
L] MOy MOy MOV MDY TEST TEST
| a2V ) oY I movs | MOvS | cMps | cups | TEST | TEST | 5705 | 5708 | Loos | LooS | 5CAS | scas
B MOy Moy MY MOV Moy Moy Woy Mov Moy Moy Mty Mov Moy MOy MOV may
1~ AL |1~ CL | v=DbL | «—~8BL 11 —AH] 1 ~CH |1 —~0OM [ =BH [+ - AX[4—-CX |y —-DX| 1 -BX|r-SP 1 -BP| 1 =8I [¢-D
C RET. LS MOy RET. RET INT INT
1n+5Fy RET LEs LO§ birim | wis/im L[i+5P) | Type 3 { [(Any) 70 RET
0 Shilt Shitt Shifl Shill ESC ESC ESC ESC E5C ESC ES( ESC
b w by | wy { AAM ] A0 AT o 1 2 i i 5 3 7
E | LOOPMZ/| LOOPZ: LGOP KR 3 N N ouT i) g CaLL JWF JuP JMF L] ] aur QuT
LOOPNE | LODPE b w b w d d 14 514 vb (] b '
F REP Grp 1 Grp 1 Grp2 Grp2
LOGCK fEP 1 HLT CMC brim | wrm Lt 81C cu ' &7l CLn 41D brim | wrim
where
mod hrm | 000 | bot nin ot 10d Wi 110 11
mmed | A0 | OA ADC | SBE | AND | SUB X0R | CMP
Shilt FOL_ woA [ ROL | ALK | SHL/SAL | SHA = 5AR
G 1 T | — WOT | NEG | WL MUl On 1y
Gl INC DEL Call | CaLL Jue JMp PUSH -
i ad W e
b = byte operation m = memory

4 = direct
[ = trom CPU reg
1 = immediate
+a = immed 19 Accum.
W - indirect
15 - immed, byle. sign ext
I - long ig niersegment

rim = EA is second byte
si = shorl intrasegmant
51 = segmenl ieqister

t=to CPU reg
v - vanable

w - word aperation
T - zerq

Mnemonics i Intel, 1978
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8086 Instruction Sequence

Figure 4-22 illusirates the internal operation and
bus activity that occur as an 8086 CPU executes a
sequence of instructions. This figure presents the
sighals and timing relationships that are impor-
tant in understanding 8086 operation. The follow-
ing discussion is intended to help in the interpreta-
tion of the figure.

Figure 4-22 shows the repeated execution of an
instruction loop. This loop is defined in both
machine code and assembly langnage by figure
4-21. A loop was chosen both to demonstrate the
effects of a program jump on the queue and to
make the instruction sequence easy to foliow. The
program s¢quence shown was selected for several
reasons. First, consisting of seven imstructions
and 16 bytes, the sequence is typical of the tight
loops found in many application proprams.
Second, this particular sequence contains several
short, fast-execuring instruciions that
demonstrate both the effect of the queuc on CPU
performance and the interaction between the exe-
cution unit (EU) fetching code from the queue
and the bus interface unit (BIU) filling the gqueue
and performing the requested bus cycles. Last,
for the purpose of this discussion, code, stack,
and memory data references were arranged to be
aligned on even word boundaries.

ASSEMBLY LANGUAGE MACHINE CODE

MOV AX, DF802H B802F3
PUSH AX 50

MOV CX, BX 8BCB
MOV DX, CX asin
ADD AX, ESI 0304
ADD 5l, 8086H 81G68680
JMPS§ 14 EBFO

Figure 4-21. Instruction Loop Sequence

Figure 4-22 can be more easily interpreted by
keeping the following guidelines in mind.

s The gueue status lines (QS0, QS1) are the key
indicators of EU activity.

¢ Status lines 52 through $0 are the main
indicators of 8084/8088 bus activity.

s Interaction of the BIU and EU is via the
queue for prefetched opcodes and via the EU
for requested bus cvcles for data operands.

Keeping these guidelings in mind, the instruction
sequence depicted in figure 4-22 can be described
as follows. Starting the loop arbitrarily in clock
cycle | with the queue reinitialization that oveurs
as part of the JMP instruction, JMP insiruction
execution is completed by the EU, while the BIU
performs an opcode fetch to begin refilling the
queue. (Note that a shorthand notation has been
used in the figure to represent the two queune
slatus lines and the three staius lines—actlive
periods on any of these lines are noted and the
binary value of the lines is indicated above each
aclive region.)

In clock cycle 8, the queue status lines indicate
that the first byte of the MOV immediate instruc-
tion has been removed from the queue {(one clock
cyele after it was placed there by the BIU fetch)
and that execution of 1his instruction has bepun.
The second byte of this instruction is taken from
the queue in clock cycle 1D and then, in clock
cycle 12, the EU pauses to wait one clock cycle for
the B1U’s second opcode fetch to be completed
and for the third byte of the MOV immediate
instruction te be available for execution
{remember the queue status lines indicate queue
activity that has occurred in the previous clock
cycle).

Clock cycle 13 begins the execution of the PUSH
AX instruction, and in ¢lock cycle 135, the BIU
begins the fourth opcode fetch. The BIU finishes
the fourth fetch in clock cycle 18 and prepares for
another fetch when it receives a request from the
EU for a memory write (the stack push), Instead
of completing the opcode fetch and forcing the
EL 1o wait four additional clock cycles, the B1U
immediately aborts the fetch c¢yele (resulting in
two idle clock cyeles (T in clock cyeles 19 and
200 and performs the required memory write. This
interaction between the EU and BIU results in a
single clock extension to the execution time of the
PUSH AX instruction, the maximum delay that
can gccur in response to an EU bus cycle request.

Execution continues in clock cycle 24 with the
execution of back-to-back, register-to-register
MOV instructions. The first of these instructions
takes full advantage of the prefetched opcode 10
complete this operation in two clock cycles. The
second MOV instruction, however, depletes the
queue and requires two additional clock cycles
{clock cvcles 28 and 29).
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Figure 4-22_Sample Instruction Sequence Execution

In clock eycle 30, the ADD memory indirect to code sequences, however, use a higher proportion
AX instruction begins. In the time required 1o of more complex, longer-executing instructions
execute this instruction, the BIU completes two and addressing modes, and therefore tend to be
opcode fetch cyeles and a memory read and execution limited. In this case, less BIU-EU
begins a fourth opcode fetch cycle. Noie that in interaction is required, the gQueue more often is
the case of the memory read, the EU's request for full, and more idle states occur on the bus.
a bus ¢yele pecurs ata point in the BID fetch cycle
where it can be incorporated directly (idle states The previous example sequence can be easily
arenot required and no EU delay is imposed). extended to incorporate wait states in the bus
access cycles. In the case of a single wait state,
In clock cycle 44, the EU begins the ADD gach bus cycle would be lengthened to five clock
immediate instruction, taking four bytes from the cycles with a wait state (Tywy) inserted between
aueve and completing instruction execution in every Ty and T4 state of the bus cycle. As a first
four clock cycles. Also during this time, the BIU approximation, the instruction seguence exection
senses a full queue in clock cycle 45 and enters a time would appear to be lengthened by 10 clock
series of bus idle states (five or six bytes constitute cycles, one cycle for each useful read or write bus
a full gqueue in the 8086; the BIU waits until it can cycle that occurs, Actually, this approximation
fetch a full word of opcede before accessing the for the number of wait states inserted is incorrect
bus). since the gueue can compensate for wait states by
making use of previcously idle bus time. For the
At clock cycle 47, the BIU again begins a bus example sequence, this compensation reduced the
cycle sequence, one that is destined to be an actual execution time by one wait state, and the
“overfetch’” since the EU is executing a JMP sequence was completed in 64 ciock cycles, one
instruction. As part of the JMP instruction, the less than the approximated 65 clock cycles.

queug reinitialization (which began the instruc-
LON sequence) Ocours.,

The entire sequence of instructions has taken 55 4.3 8089 |/0 Processor
clock cyveles. Eighteen opeode bytes were letched,
one word memory read occurred, and one word The [ntel™ 8089 1/0 Processor (10P) combines
stack write was performed. the functions of a DMA controller with the pro-
cessing capabilities of a microprocessor. In addi-
This example was, by design, partially bus limited tion to the normal DMA function of transferring ,
and indicates the types of EU and BIU interaction data, the 8089 is capable of dynamically
that can occur in this situation. Most application translating and comparing the data as it is
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Figure 4-22. Sample Instruction Sequence Execution

transferred and of supporting a number of ter-
minate conditions including byte count expired,
data compare or miscompare and the occurrence
of an external event. The 8089 contains two
separate DMA channels, each with its own
register set. Depending on the established
priorities (both inherent and program deter-
mined), the two <channels can alternate
{interleave) their respective operations.

Designed expressly to relieve the 8086 or 3088
CPU of the overhead associated with 170 opera-
tions, the 8089, when configured in the remote
mode, can perform a complete 170 task while the
CPU is performing data processing tasks. The
8089, when it has completed its 1/0 task, can then
interrupt the CPU.

Transfer flexibility is an integral part of the
808975 design. In addition to routine transfets
between an [/0 peripheral and memory, transfers
can be performed between two 1/0 devices or
between two arcas of memory, Transfers between
dissimilar bus widths are automatically handled
by the B089. When data is transferred from an
8-bit peripheral bus to a 16-bit memory bus, the
808% reads two bytes from the peripheral,
assembles the bytes into a 16-bit word and then
writes the single word 1o the addressed memory
location. Also, both 8- and 16-bit peripherals can
reside on the same {16-bit) bus; byte transfers are
performed with the 8-bit peripheral, and word
transfers are performed with the 16-bit
peripheral.

System Configuration

The B0B9 can be implemented in one of two
system configurations: a “*local’”” mode in which
the 8089 shares the system bus with an 8086 or
3088 CPU and a ‘“‘remote” mode in which the
8089 has exclusive access t0 its own dedicated bus
as well as access to the system bus. Note that in
either the local or remote mode, the B08Y can
address a (ull megabyie of sysiem memory and
64k bytes of 1/0 space.

Local Mode

In the local mode, the B089 acts as a slave 1o an
8086 or 8088 CPU that is operating in the max-
imum mode. In this configuration, the 85089
shares the system address laiches, data
transceivers and bus cootroller with the CPU as
shown in figure 4-23.

Since the IOP and CPU share the system bus,
¢ither the 10P or the CPU will have access 10 the
bus at any one time. When one processor is using
the bus, the other processor floats its
address/data and control lines. Bus agcess
between the [OP and CPU is determined through
the request/grant function. Recalling the CPU’s
request/grant sequence, the IQP requests the bus
from the CPU, the CPU grants the bus to the
[OP, and the IOP relinquishes the bus to the CPU
when its operation is complete. Remember that
the CPU cannot request the bus from the [OP
{the CPU is only capable of granting the bus and
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Figure 4-23. Typical 8088/8089 Local Mode Configuration

must wait for the 10P to release the bus). Also,
since the request/grant pulse exchange must be
synchronized, both the CPU and 10P must be
referenced 1o the same clock stgnal,

The 8089 [OP, when used in the local mode, can
be added to an 8086 or 8088 maximum mode con-
figuration with little affect on component couni
{channel attention decoding logic as required) and
offers the benefits of intelligent DMA
(scan/maich, translate, variable termination con-
ditions), modular programming in a  full
megabyte of memory address space and a set of
optimized [/ O instructions that are unavailable to
the 8086 and 8088 CPUs. The major disadvantage
ta the local configuration is that since the system
bus is shared, bus contention always exists
beiwcen the CPU and IOP, The use of the bus
load timit field in the channel control word can
help reduce IOP bus access during task block pro-
gram execution (bus load limiting has no affect on
DMA  transfers) although, for 170 intensive
systems, the remote mode should be considered,

Remote Mode

The 8089, when used in the remote mode, pro-
vides a multiprocessor system with true parallel
processing. In this mode, the 8089 has a separate
{local) bus and memory for 170 peripheral com-
munications, and the system bus is complerely
isolated from the 1/0 peripheral(s). Accordingly,
/0 transfers between an 170 peripheral and the
IOP’s local memory can occur simultancously
with CPU operations on the system bus.

As shown in figure 4-24, (o interface the 8089 to
the sysitem bus, data transceivers and address
latches are used (o separate the 1OP’s local bus
from the system bus, an 8288 Bus Controller is
used to generate the bus control signals for both
the local and system buses as well as to govern the
operation of the transceivers/latches, and an 8289
Bus Arbiter is used to control access to the system
bus (¢ach processor in the sysiem would have an
associated 8289 Bus Arbiter). To interface the
8089 to its local bus, another set of address

4-40
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Figure 4-24. Typical 3089 Remote Mode Configuration

latches is required (unless MCS-85™ multiplexed
address components are exclusively interfaced)
and, depending on the bus loading demands, one¢
(8-bit bus) or two (16-bit bus) data transceivers
would be used.

In the remote mode, the IOP’s local bus is treated
as 170 space (up to 64k bytes), and the system bus
is treated as memory space {I megabyte). The
§288 Bus Controller’s 1/0 command outputs con-
trol the local (1/0) bus, and its memory command
outputs contro! the system (memory) bus. The
8289 Bus Arbiter, which is operated in its IOB
(I/0 peripheral bus) mode, also decodes the
IOP’s S2 through S0 status gutputs. In this mode,
the 8289 will not request the multimaster system
bus when the I0OP indicates an operation on its
local bus. If the 10P’s bus arbiter currently has
access to the system bus, the CPU’s arbiter {or
any other arbiter in the svstem) can acquire use of
the systern bus at this time (a bus arbiter main-
tains bus access until another arbiter requests the
bus).

Bus Operation

The 8089 utilizes the same bus structure as an
8086 or BORE CPU that is configured in the max-
imum mode and performs a bus cycle only on de-
mand {e.g., to fetch an instruction during task
block execution or to perform a data transfer).
The bus cycle itself is identical to an 8086 or 8088
CPU’s bus cycle in that all ¢ycles consist of four
T-states and use the same time-multiplexing
technigue of the addressdaca tings. As shown in
the following timing diagrams, the address (and
ALE signal) is output during state Ty for either a
read or write ¢ycle. Depending on the type of
cyele indicated, the address/data lines are floated
during state Ty for a read cycle {figure 4-23) or
data is output on these lines during a write cycle
(figure 4-26). During siatc Ty, write data is main-
tained or read data is sampled, and the busy cycle
is concluded in stare Ty

Since the 8089 is capable of transferring data 1o or
from both 8§-bit and 16-bit buses, when an 8-bit
physical bus is specified {bus width is specified
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during the initialization sequence), the address
present on the AD15 through AD8 address/data
lines is maintained for the entire bus cycle as
shown in figure 4-25 and, unless added drive
capability is required, the associated address laich
can be eliminated. An B-bit data bus is compatible
with the 8088 CPU and with the MCS-83™
muitiplexed address peripherals (8155, 8183,
ete.).

The 8089 operales identically 1o the 8086 CPU
with respect to the use of the low- and high-order
halves of the data bus. Table 4-14 defines the data
bus use for the various combinations of bus width
and address boundary.

The 52 through SO status lines define the bus cycle
to be performed. These lincs are used by an 8288
Bus Controller to generate all memory and 1/0
command and conirol signals, and are decoded
according to table 4-15.

Table 4-14. Ixata Bus Usage

Physical Bus Width:
Lagical Address
Bus Widilh' Boundary 8 16
Byte Transfer Word Transter
: AD7-ADQ = DATA ADT-ADD = DATA
Even (BHE not used) (BHE high) N/A
8
AD7-ADO = DATA AD15-ADB=DATA
Odd (BHE not used) (BHE low) NiA
AD7-ADD = DATA AD15-ADQ = DATA
Even lliegal (BHE high} (BHE low)
16
AD15-ADB = DATA \
Qdd lilegal (BHIE low) NiA

MNotas:
1. Logical bus widih is specified by the WID instruction prior to the DMA transfer,
Physical bus width is specified when the B089 is initialized.

A word transfer to or from an odd boundary is performed as two byte transfers. The tirst byte trans-
farred is the low-order byte on the high-order data bus (AD15-AD8), and the sacand byta is tha high-
order byte on the low-order data bus (AD7-ADO). The 8088 automatically assembies the two bytes in
their proper order.

Table 4-15. Bus Cycle Decoding

itatus._OutpE Bus Cycle indicated cBus Controller
33 18§ | S0 ommand Quiput
0 0 0 Instruction fetch from 11O space INTA

0 9 1 Data read from 11O space ___IORGC

0 1 0 Data write 16 110 space IOWGC, AIOWC

0 1 1 Not used None

1 0 1} Instruction fetch from system memory MRDC

1 0 1 Data read from system memory MRDC

1 1 0 Data write to system memory MWTC, AMWC

1 1 1 Fassive None

4-43

T




HARDWARE REFERENCE INFORMATION

Note that the 8082 indicates an instruction fetch
from 1/0Q space as a status of zero (82, S1 and S0
equal 0). Since the 8288 Bus Controller decodes
an input siatus value of zerco as an interrupt
acknowledge bus cycle, the bus controller’s INTA
output must he OR’ed with its [ORC output to
permit fetching of task block instructions from
local 8089 memory (remote configuration) or
system [E/(0 space (local and remote
configurations).

The S2 through S0 status lines become active in
state T4 if a subsequent bus cycle is to be per-
formed, These lines are set 1o the passive state {all
“‘ones’’) in the siate immediately prior to state Ty
of the current bus cycle (state T3 or Ty,) and are
floated when the 8089 does not have access to the
bus.

The S6 through §3 status lincs are multiplexed
with the high-order address bits (A19-A16) and,
accordingly, become valid in state Ty of the bus
cycle. The 54 and 53 status lines reflect the type of
bus cycle being performed on the corresponding
channel as indicated in table 4-16.

Table 4-16. Type of Cycle Decoding

Status Qutput

51 53 Type of Cycle

0 ] DMA onChannel 1

0 1 DMA on Channel 2

1 0 Non-DiA on Channel 1
1 1 Non-DMA on Channel 2

The S6 and 55 status lines are always **1"’ on the
8089. Since these lines are not both **1"* on the
other processors in the 8086 family (Sé is always
“0" on the 8086 and 8088 CPUs), these status
lines c¢an be used as a ‘‘signature’ in a
multiprocessor environment to identify the type
of processor performing the bus cycle.

The 8089 includes the same provision as do the
8086 and 8088 CPUs for the insertion of wait
states (T} in a bus cycle when the associated
memoty or [/O device cannot respond within the
alloted time interval or when, in the remote mode,
the 8089 must wait for access to the system bus.
An 8284 Clock Generator/Driver is used to con-
trol the insertion of wait states which, when
required, are inserted between states Ty and Ty,
The actual insertion of wait states is accomplished
by deactivating one of the 8284’s RDY inputs

(RDY! or RDY2). Either of these inputs, when
enabled by its corresponding AENI or AEN2
input, can be deactivated directly by the memory
or 1/Q device when it must extend the 8089°s bus
cycle {(when the addressed device is not ready to
present or accept data). The §284's READY out-
put, which is synchronized to the CLK signal, is
directly connected to the 808%'s READY input.
As shown in figure 4-27, when the addressed
device requires one or more wait staigs to be
inserted into a bus cycle, it deactivates the 8284°s
RDY input prior to the end of siate T3, The
READY output from the 8284 is subsequently
deactivated at the end of state T9 which causes the
8089 to insert wait states following state Ty. To
exit the waii state, the device activates the 8284's
RDY input which causes the READY input to the
8089 to go active on the next clock cycle and
allows the 8089 to enter state Ty,

OHE BUS GYELE
T T2 T T

™ Ts

ravens —] |- -

gL —| e —| —ToLRix

ACY INPUT

READY
quTeUT

ABRADY HOT READY RABADY

~REFEA TO THE B304 CLOCK DENERATORIDRIVER DATA SHEET 1N APPENGIN B FOR
TIMING INFORMATION

Figure 4-27. Wait State Timing

Periods of inactivity can occur between bus
cycles. These inactive periods arg referred to as
idle states (T)) and, as with the 8086 and 8088
CPUs, can result from the execution of a *‘long”
instruction or the loss of the bus to another pro-
cessor during task block insiruction execution.
Additionally, the 8089 can experience idle states
when it is in the DMA mode¢ and it is waiting for a
DMA request from the addressed 1/0 device or
when the bus load limit (BLL) function is enabled
for a channel performing task block instruction
execution and the other channel is idle.

Initialization

Initialization of the IOP is generally the respon-
sibility of the host processor which, as stated in
Chapter 3, prepares the communications data
structure in shared memory. Initialization of the
[OP itself begins with the activation of its RESET
input. This input {originating typically from an
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8284 Clock Generator/ Driver) must be held active
for at least five clock cycles to allow the 8089°s
internal reset sequence to be completed. Note that
like the 8086 and 8088 CPUs, the RESET input
must be held active for at least 50 microseconds
when power is first applied. Following the reset
imerval, the host processor signals the QP (o
begin its initialization sequence by activating the
BOBY’s CA (Channel Attention) input. The 8089
will not recognize 4 pulse al its CA input until one
clock cycle after the RESET input rcturns to an
inactive level. Note that the minimum width for a
CA pulse is one clock cycle and that this pulse
may go active prior to RESET returning to an
inactive level provided that the negative-going,
traiting-edge of the CA pulse does not occur prior
to one clock cyele after RESET goes inactive.
Figure 4-28 illustrates the timing for this portion
of the initialization sequence.

MUZT BE CTIVE
RESET FOR FIVE CLOCK, \

SYTLED
|‘—| CLK #Mh -[

N

1 LK MIN

i
cs f

ED

Figure 4-28. RESET-CA Initialization Timing

Coincident with the trailing edge of the first
CA pulse following resct, the 3089 samples its
SEL (Select) input from the host processor to
deiermine master/slave status for its
request/grant circuity. If the SEL input is low,
the 8089 is designated a **master,”” and if the SEL
input is high, the 8089 is designated a “‘slave.”” As
a master, the 8089 assumes that it has the bus
initially, and it will subsequently grant the bus to
a requesting slave when the bus becomes available
(i.e., the 8089 will respond to a “‘request’” pulse
On ils RQ/(_:T line with a “‘grant’” pulse). A single
8089 in the remote configuration (or one of two
8089s in a remote configuration} would be
designated a master. As a slave, the 8089 can only
request the bus from a master processor (i.e., the
8089 1mt|ates the request/grant sequence by out-
putting a “‘request”’ pulse on its RQ/GT line). An
8089 that shares a bus with an 8086 or 8088 {or
one of two 8089s in a remote configuration)
would be designated a slave. Note that since the
8086 and 8088 CPUs can grant the bus only in
response to a request, whenever an 8086 or 5088

and an 8089 share a common bus, the 8089 must
be dcstgnated the slave. Also, when the RQ/GT
tine i3 not used {i.e., a single 8089 in the remote
configuration), the 8089 must be designated a
master.

In addition to determining master/slave status,
the CA pulse also causes the 8089 10 begin execu-
tion of its internal ROM initialization sequence.
MNote 1hat since the 8089 must have access (o the
system bus in order 1o perform this sequence, the
BO89 immediately initiates a request/grant
sequence (if designated a slave) and, if required,
then requests the bus through the 828% Arbiter.
(If designated a master, the 8089 requests the bus
through the §289 Arbiter.) In the execution of the
initialization sequence, the 8089 first fetches the
SYSBUS byte from tocation FFFF&H. The W bit
{bit 0) of this byte specifies the physical bus width
of the system bus. Depending on the bus width
specified, the 8089 then ferches the address of the
system configuration block (SCB) contained ia
locations FFFF8H through FFTFBH in cither two
bus cycles (16-bit bus, W bit equal 1) or four bus
cycles (8-bit bus, W bit equal 0). The SCB offset
and segment address values fetched are combined
into a 20-bit physical address that is stored in an
internal register. Using this address, the 8089 next
fetches the system operation command (50C)
byte. As explained in Chapter 3, this byte
specifies both the request/grant operational mode
(R bit) and the physical width of the 150 bus (I
bit). After reading the SOC byte, the 8089 fetches
the channel control Block (CB) offset and sep-
ment address valugs. These valucs are combined
into a 20-bit physical address and are stored in
another iniernal register. To inform the host CPU
that it has completed the initialization sequence,
the 8089 clears the Channel 1 Busy flag in the
channel control block by writing an all **zeroes™
byteto CB + 1.

After the IOP has been initialized, the system
conliguration block may be altered in order to in-
itialize another IOP. Once an 1OP has been in-
itialized, ils channel control block in system
memory cannot be moved since the CB address,
which is internally stored by the IOP during the
initialization sequence, is automartically accessed
on every subsequent CA pulse.
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Asg previously stated, the generation of the CA
and SEL inputs to the OP are the responsibility
of the hast CPU. Typically, these signals result
from the CPU’s execution of an 1/0 write
instruction 1o one of two adjacent 1/O ports (/0
port addresses that only differ by A0). Figure 4-29
illustrates a simpie decoding circuit that could be
used to generate the CA and SEL signals. Note
that by qualifying the CA output with IOQWC, the
SEL output, since it is latched for the entire 1/0
bus cycle, is guaranteed to be stable on the trailing
edge of the CA pulse.

A7
Ag
As
Ay
A3
Ag

R T

o » SEL

PORT FC = CHANNEL 1 CA
POAT FO = CHANMNEL 2 CA

Figure 4-29. Channel Attention Decoding Circuit

530

flirg Ch

/0 Dispatching

During normal operation, the 170 supervisory
program tunning in the host CPU will receive a
request (o perform a specific 1/ operation on
one af the 808%'s channels. In response (o this
request, the supervisory program will typically
perform the following sequence of opearations:

¢  Check the availability of the specified
channel by examining the channel’s busy flag
in the Channel Control Block. If it is possible
for another processor 1o access the channel, a
semaphore operation (implemented by a
locked XCHG instruction) is used to check
channel avaitability.

» Load the variable parameters required for
the intended operation into the channel's
parameter block.

* Load the channel command word (CCW)
into the channel control block.

¢«  Establish the necessary linkages by writing
the starting address of the channel program
{lask block) in the first four bytes of the

parameter block and writing the address of
the parameter block in the channel conirol
block,

¢ Issue a channel attention (CA) w0 the
specificd channel,

In response to the CA, the 8089 interrupts any
current activity at ics first opportunity (see *‘Con-
current Channel Operation” in section 3.2) and
begins execution of an internal instruction
sequence that fetches and decodes the channel
command word (CCW) and then performs the
operation indicated (i.e., start, halt ot continue
channel program execution).

If the CCW specifies start channel program (start
task block execution), the address of the
parameter block is fetched from the channel
contrel biock, the address of the first channel
program instruction (contained in the first four
bytes of the parameter block) is fetched and then
loaded inte the TP (task pointer) register and,
finally, task block execution is initiated from
e¢ither system or 1/0) space. Task block execution
continues, subject 0 the activity on the other
channel as described m ‘“‘Concurrent Channel
Operation,”” until a XFER instruction  is
executed. Following execution of this instruction,
the next sequential channel program instruction is
executed before the channel enters the DMA
transfer mode,

If the CCW specifies halt channel, the curren:
operation on the specified channel is halted. [f the
channel is performing rask block execution (either
chained or not chained), channel cperation is
stopped at an instruction boundary, and if the
channel is performing a DMA ransfer, channel
operation is stopped at a DMA transfer cycle
boundary. Wote that a channel will not stop a
locked DMA transfer until the operation is com-
pleted. There are two unique halt channel com-
mands. One command simply halts the channel
and clears the busy flag in the channel control
block. This command is used when the halted
operation is to be discarded. The other command
halts the channe!, saves the task pointer and pro-
gram status word (PSW) byte, and clears the busy
flag. This command is used when the halted
operation is to be resumed. MNote that this halt
command will not affect the integrity of resumed
task block execution or a memory-to-memoty
DMA transfer, but could affect the integrity of a
synchronized DMA transfer (a DMA request
occcuring while the channel is halted ¢could be
missed).
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If the CCW specifics continue channel, an opera-
tion that has been previously halted is resumed
{and the busy flag is set). Since this command
restores the task pointer and PSW, it should be
used only if the task pointer and PSW have been
saved by a previous halt command.

Table 4-17 outlings the various CCW command
execution times. Note that the times tisted in the
table for the hall ¢ommands do not include the
time required to complete any current channel
activity when the channel attention is received
(completion of the current DMA transfer cycle or
task block instruction}.

DMA Transfers

The number of bytes transferred during a single
DMA cycle is determined by both the source and
destination logical bus widths as well as by the

address boundary (odd or even addressy. The
8089 performs DMA transfers between dissimilar
bus widths by assembling bytes or disassembling
words in its internal assembly register file. As
explained in Chapter 3, the DMA source and
destination bus widths are defined by the execu-
tion of a WID instruction during task block
(channel command) execution. Note that the bus
widths specified remain in force until changed by
a subsequent WID instrucrion. Tabke 4-18 defines
the wvarious byte (B} and word (W)
source/destination transfer combinations based
on address boundary and bus width specified.

The 8039 additionally optimizes bus accesses dur-
ing transfers between dissimilar bus widths
whenever possibte. When either the source or
destination is a 16-bit memory bus (auto-
in¢rementing) that is initially aligned on an odd

Table 4-17. CCW Command Execution Times

CCW Command

Minimum Time*

Maximum Time**

CANOP
GA Halt {no save)
CA Halt {(with save)
CA Start (memory)
CA Start{1/O)
CA Continue

48 + 2nclocks
48 + 2nclocks
94 + 5n¢locks
108 + 6n Clocks
96 + Snclocks
95 + 5nclocks

45 + 2n clocks

48 + 2n clochks

100 + 6n ¢clocks
124 + 10n ClOCks
108 + Bn ¢locks
103 + 6o clocks

e ——— - = s

Notes:
n isthe number of wait states per bus cycle.

* Minimum time occurs when both the channel contral block and parameier block addresses are aligned on
an even address boundary and a 16-bit busis used.

** Maximum time occurs when both the channel control black and parameter block addresses are aligned
on an odd address boundary on a16-bit bus or when an B-bit bus is used.

Table 4-18. DMA Assembly Register Operation

Logical Bus Width

Address Boundary {Source — Destination)
{Source — Destination}
§+8 816 6—~8 16— 16
Even —~ Even B—+~RB B/IB+-W | W—-B/B W= W
Even - Odd B—~B BE—~B wW-— 8B w— BiB
Odd — Even BB B/B—~wW B-+8B BIg -wW
Odd - Odd B—+B B—B B—-8 B—B

4-47
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address boundary (causing the first transfer cycle
to be byte-to-byte), following the first transfer
cycle, the memory address will be aligned on an
¢ven address boundary, and word transfers will
subsequently occur. For example, when perform-
ing 2 memory-1o-port transfer from a 16-bit bus
to an §-bit bus with the source beginning on an
odd address boundary, the first transfer cycle will
be byte-to-byte (B — B) as indicated in table 4-18,
but subscquent transfers will be word-to-
byte/byte (W — B/B).

All DMA transfer cycles consist of at least (wo
bus cycles; one bus cycle to fetch (read) the data
form the source into the [OP, and one bus cycle
o store (write) the data previously fetched from
the 10OP into the destination. Note that in all
transfers, the data passes through the IOP to
allow mask/compare and translale operations to
be optionally performed during the transfer as
well as to allow the data to be assembled or
disassembled.

The IOP performs DMA transfers in one of three
modes: unsynchronized, source synchronized or
destination synchronized (the transfer mode is
specified in the channel control register). The un-
synchronized mode is used when both the source
and destination devices do not provide a data re-
quest (DRQ) signal to the [OP as in the case of a
memory-to-memory transfer. In the synchronized
transfer modes, the source (source synchronized)
or destination (destination synchronized) device
mmitiates the transfer cycle by activating the 10P’s
DRQI (channel 1} or DRQ2 {(channel 2) input.

The DRQ input is asynchronous and usually
originates from an 1/0 device controller rather
than from a memory circuit. This input is laiched
on the positive transition of the clock {CLK)
signal and (herefore must remain active for more
than one clock period (more than 200
nanoseconds when using a 5 MHz clock) in order
Lo guarantee that it is recognized.

During state T of the associated fetch bus cycle
(source synchronized) or store bus cyele (destina-
tion synchronized), the 10P outpuis the address
of the /0 device (the port address). This address
must be decoded (by extermal circuitry) to
generate the DMA acknowledge (DACK) signal
to the 170 eontroller as the response to the con-
troller’s DMA request. An [/Q coniroller will
typically use DACK as a conditicnal input for the
removal of DRQ. (After receipt of thc DACK
signal, most Intel peripheral controllers deac-
tivate DRQ following receipt of the COrTEspon-
ding read or write signal.) Figures 4-30 and 4-31
illustrate the DRQ/DACK timing for bath source
synchronized (i.e., port-to-memory) and destina-
tion synchronized (i.e., memory-to-poert)
transiers.

Table 4-19 defines the DMA transfer cycles in
terms of the number of bus and clock cycles re-
quired. Note that the number of clocks required
to complete a transfer ¢ycle does not take into ac-
count the effects of possible concurrent opera-
tions on the other channel or wait states within
any of the bus cycles,

L3 B

Tk

RO HOLD { |

FROM READ

ORQ*
(FROM 110 BEYICE

DACK f ‘
ADECGDED 1D ADDAESY) VALID 110 ADDRESS PRESEMT

NOTES

VI

—— - TRAMSFER G YSLE

+———FETCH BUS CYOLE ——— =———=5T*RE EJS CYCLE———+

ZIDLE LIQLE FIOLE
CLOCKS! +cmcxs " cLocks ™

DRO FOR NEXT TAANSFER CYOLE

1 INDICATES THE NUMBER OF IDLE CLOGK CYCLES IMSERTED BEFORE THE WExT
TRANSFER CYCLE BEGINS. IF DRG |2 RECEIVED PRIOR T0 STATE T4 OF THE CURRENT
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CURRENT STORE CYOLE.

2 |F THE B029 15 IGLE WHEN (R4 IS RECOM:MIZED, FIVE IDLE CLOCK CYCLES OCCUR
BEFORE THE ASSOCIATED TRANSFER CYELE IS iNITIATED

Figure 4-30. Source Synchronized Transfer Cycle
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TRAMSFER CYCLE TAANSFER CYCLE 2

+———3TORE BUS CGTCLE 3 — ~

| F

~——— FETCH BUS CYCLE 1' =+ STORE BUS CYGLE | ——=|~———FETCH BUS GYCLE 2
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HOLD — | AWLE o 5 IE CLOCKE ———
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Ao ! DAG FOR NEXT TRANSFER CYCLE J A i
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NOTES: 1 FIRST (MA FETCH CYCLE OCCURS IMMEDIATELY AFTEA THE LAST TASK BLOCK

INSTRUCTHIN |5 EXECUTED.
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A INDMCATES THE WUMBER OF IDLE CLOCK CYCLES IWSERTED BFFORE STORE BUS
CYLLE ¥ BEGINS, |F ORQ 15 RECEIVED PRIQR TO STATE 14 OF STORE BUS CH'CI.E 1
STOAE BUS CYCLE 2 BEGING IMMEDIATELY FOLLOWING FETCH BUS CYCLE

4. IF THE BOR3 IS IOLE WHEN CRU 1% AECOHWGEMIZED, FIVE ILE CLOCK CTCLES QUOUR
BEFORE THE ASSO-CIATED STORE BUS CYCLE 1S INITIAYED.

Figure 4-31. Destination Synchronized Transfer Cycle

Table 4-19. DMA Transfer Cycles

Transfer Mode
Logical Bus Width

Unsynchronized Source Synchronized Destination Synchronized
. Bus Cyclas Total! Bus Cycles Total' Bus Cycles Total
Source|Destination Required Clocks Required Clocks Required Clocks

8 8 2 (1 fetch, 1 store) 8 241 fetch, 1 store) 8! 2{1 fetch, 1 slorg)| 8&°

8 16° Ji2fetgh,1store}; 12 3{2 fetch, 1 store)| 18° 3 (2 feteh, 1 store)] 12

16} 8 3 {1fetch, 2 store) 12 3{1 fetch, 2 store) 12 3t fetch, 2 store)| 16

16! 16! 2 (1fetch, 1 store) 8 21 fetch, 1 store} 8 2 (1 fetch, 1 store) 8

Notes.:

1. The “‘Total Ciocks Required’ does not include wait states. One clock cycle per wait state must be
added to each fetch and/for store bus cycle in which a walt state is inserted. When performing a
memory-to-memory transfer, three additional clocks must be added to the total clocks required {the
first fetch eycle of any memory-to-memory transfer requires seven clock cyclas).

2. When performing a translate operation, one additional 7-clock bus cycle must be added to the values
specifiedin the table.

3. Word transfers in the table assume an even address word boundary. Word transfers to or from odd
address boundaries are performed as indicated in fabie 4-18 and are subject to the bus cycle/clock
reguirements for byte-to-byte transfers.

4. Transfer cycles that include two synchronized bus cycles (i.e., synchronous transfers between
dissimilar logical bus widths) insert four idle clock cycles belween the two synchronized bus cycles
to allow additional time for the synchronzing device to remove its initial DMA request.
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DACK latency is defined as the time required for
the 8089 to acknowledge, by outputting the
device’s corresponding port address, a DMA
request at its DROQ input. This response latency is
dependent on a number of factors including the
transfer ¢ycle being performed, activity on the
other channel, memory address boundaries, wait
slales present in ¢ither bus cycle and bus arbitra-
tion times,

Generatly, when the other channel is idle, the
maximumn DACK latency is five clock cyeles (1
microsecond at 5 MH?z), excluding wait states and
bus arbitration times. An exception occurs when
performing a word transfer to or from an odd
memoary address boundary. This operation, since
Iwo sLore {source synchronized) or two fetch
(destination synchronized} bus cycles are required
10 access memory, has a maximum possible laten-
¢y of nine clock cycles. When the other channel is
performing DMA transfers of equal priority
(**P’" bits equal), interleaving occurs at bus cycle
boundaries, and (he maximum latency is either
nine clock cycles when the other channel is per-
forming a normal 4-clock fetch or slore bus cycle
or twelve clock cycles when the other channel is
performing the first feich cycle of a memory-to-
memory transfer. Lf the other channel is perform-
ing “chained’ task block instruction execution of
equal priority, maximum latency can be as high as
12 clock cyeles (channel command instruction
execution is interrupted at machine cycle boun-
daries which range from two to cight clock
cyiles).

DMA Termination

As stated in Chapter 3, a channel can exit the
DMA transfer mode (and return 0 task block
execution) on any of the following terminate
conditions:

*  Single cyele transfer

= Bytecountexpired

*  Mask/compare match or mismatch
*  FExternal event

The terminate conditions are specified by in-
dividual fields in the channel control register.
More than ong terminaté condition can be
speeified for a transfer (¢.g., a transfer can be ter-
minated when a specific byte count is reached or
on the occurrence of an external event). When

more than one terminate condition is possible,
displacements (which are added to the task
pointer register value} are specified to cause task
block executicon to resume at a unique entry point
for each condition. Three reentry points are
available: TP, TP + 4 and TP + 8. The time inter-
val between the occurrence of a terminate condij-
tion and the resumption of task block execution is
12 ¢clock eyeles for reentry point TP and 15 clock
cycles for reentry points TP + 4 and TP + 8.

Peripheral Interfacing

When interfacing a peripheral to an 8-bit physical
dara bus, the 8089 uses only the lower half of the
address/data lines (AD7-AD0) as the bidirec-
tional data bus, and the upper half of the ad-
dress/data lines (ADI15-AD8) maintain address
information for the entire bus ¢ycle, Consequent-
ly, with this bus configuration, only one ocal
laich (e.g., an Intel™ 8282/83 CQctal Latch) is re-
quired since only the lower hall of the ad-
dress/data lines is time-multipiexed (unless the
address bus requires the increased current drive
capability and capacitive load immunity provided
by the latch).

When interfacing a peripheral to a 16-bit dala
bus, both the lower and upper halves of the ad-
dress/data lines are time-multipelxed, and two oc-
1al latches are required. Note that unlike the 8086
and 8088 CPUs, the 8089 does not time-multiplex
BHE (this signal is valid for the entire bus cycle).
Both 8- and 16-bit peripherals can be interfaced 1o
a 16-bit bus, An 8-bit peripheral can be connected
to either the upper or lower half of the bus. An 8-
bit peripheral on the lower half of the bus must
use an even source/destination address, and an &-
bit peripheral on the upper half of the bus must
use an odd source/destination address. To take
advantage of word transfers, a 16-bit peripheral
must use an even source/destination address.

To prepare a peripheral device for a DMA
transter, command and parameter data is written
to the device’s command/status port. This is
usually accomplished using pointer regisier GC.
Recalling that the 8089 executes one additional
task block insiruction following execution of the
XFER instruction (the XFER instruction causes
the 8089 1o enter the DM A mode), this additional
instruction is used 1o access the command port of
an /O device that immediately begins DMA

Maemonics - Intel, 1979
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operation on receipt of the last command (the
8271 Floppy Disk Controller begins its DMA
transfer on_ receipt of the last command
parameter}. Since a translate DMA operation re-

quires the use of all three pointer registers (GA -

and GB specify the source and destination ad-
dresses; GC specifies the base address of the
translation table), when it is necessary to use the
fast task block instruction to start the device,
command port access can be accomplished
relative to one of the pointer registers or relative
to the PP register. 1f the device's data port ad-
dress (GA or GB) is below the device’s command
port address, either an offset or an indexed
reference can be used 1o access the command
port.

A peripheral’s (or peripheral controller’sy DMA
comnmunication protocol with the 8089 is as
follows:

&+ The peripheral {when source or destination
synchronized) initiates a DM A transfer cycle
by activating the 8089's DRQ (DMA request)
Input.

* The 8089 acknowledges the request by
placing the peripheral’s assigned data port
address on the bus during state Ty of the cor-
responding fetch {source synchronized) or
store {destination synchronized) bus cycle.
The peripheral is responsible for decoding
this address as the DMA acknowledge
{DACK) to its request.

¢ The data is transferred between the
peripheral and the 8080 during the T»
through T4 staie interval of the bus cycle.
The peripheral must remove its DMA request
during this interval.

*  The peripheral, when ready, requests another
DMA transfer cycle by again activating the
DRGQ input, and the above sequence is
repealed.

*  The peripheral can, as an option, end the
DM A rransfer by activating the 8089's EXT
{external terminate) input.

The 8089 can support mulitple peripheral devices
on a single channel provided that only one device
is in the active transfer mode at any one time. To
interface multiple devices, the DMA request
(DRQ) lines are OR’ed together as are the exter-
nal terminate (EXT) lines. Unique port addresses
are, however, assigned to each device so that an

individval DMA acknowledge (DACK) is return-
ed to only the active device. DACK decoding can
be accomplished with an Inted ® 8205 Binary
Deccoder or a ROM circuit. Note that the 8089 can
only determine which device has requested service
or terminated by the context of the task block
program.

Most peripheral devices interfaced to the 8089 wiil
use the decoded DMA  acknowledge signal
{DACK) as the ““chip select” input. Peripheral
devices that do not follow this convention must
use DACK as a conditional input of chip select.

While most interrupts associated with the 3089
will be DMA requcsts or ext¢rnal terminates, non-
DMA related interrupts can additionally be
supported.

One technique that would be used when an 8089 is
the local configuration {or when an 3086 or 30338
and an 8308% are locally connected as a remote
module) is to allow the CPU to accept the inter-
rupt and then direct the 8089 1o the interrupt ser-
vice routine. Another technique is 1o allow the
8029 o *poll’” the device to determine when an
interrupt has occurred {(most peripheral con-
trollers have an interrupt pending bit in a status
word)., The 8089’s bit tesiing instructions are
ideally suited for polling.

When the 8089 is in a remote configuration, non-
DMA related interrupts can be supported with the
addition of an lntel® 8259A Programmable
Interrupt Controller. Systems that requirg this
type of interrupt structure would dedicate one of
the 8089’s channels to interrupt servicing. In
implementing this structure, the interrupt output
from the 8259A is directly connected to the chan-
nel’s external terminate (EXT) input, and the
channel's DMA request (DRQ) input is not used.
A task block program is ininially execuled Lo per-
form a source-synchronized DMA transfer {with
an external terminate) on the “interrupt’” channel
to “‘arm'’ the interrupt mechanism. Since lhe
DRQ input is not used, when the channel enters
the DMA transfer mode, the channel idles while
waiting for ihe first DMA request (which never
occurs}. The other channel, since the interrupt
channel is idle, operates at maximum throughput.
When an interrupt occurs, the ““pscudo’” DMA
transfer is immediately terminated, and task
block instruction execution is resumed. The task
block program would wriie @ ““poll”” command o
the 8259A%s command port and then read the
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8259A°s data port to acknowledge the interrupt
and to determine the device responsible for the
interrupt {the device is identified by a 3-bit binary
number in the associaled data byte). The device
number read would be used by the task block preo-
2ram as a vector into a jump table for the device's
interrupt service reutine. Pertinent interrupt data
could be written into the associated paramcter
block for snbsequent examination by the host
PFOCESSOr.

The nterrupt mechanism previously described,
since it uses the 8089's exiernal terminate func-
tien, provides an extremely fast interrupt
response time,

Note that when using dynamic RAM memory
with the 8089, an Intel® 8202 Dynamic RAM
Controller can be used to simplify the inteeface
and to perform the RAM refresh cycle, When
maximum iransfer rates are required, the RAM
refresh cycle can be externally initiated by the
8039. By connecting the decoded DACK (DMA
acknowledige) signal to the 2202's REFRQ
(refresh request) inpur, the refresh cycle will occur
coincident with the 1/0 device bus cycle and
therefore will not impose wait states in the
memory bus cycle.,

Instruction Encoding

Muost 8089 programming will be performed at the
assembly language level using ASM-89, the 8089
assembler. During program debngging, however,
it may be ne¢essary to work directly with machine
instructions when monitoring the bus, reading un-
formatted memory dumps, etc. This section con-
tains both a table to encode any ASM-89 instruc-
tion into its corresponding machine instruction

{table 4-24) and a table to “‘disassemble’’ any
machine instruction back into its asscciated
assembly language equivalent {1able 4-26).

Figure 4-32 shows the format of a typical 8089
machine instruction. Except for the LPDI and
memory-to-memaory forms of the MOV and
MOVB instructions that are six bytes long, all
8089 machine instructions consist of from iwo to
five bytes. The first two bytes are always present
and ar¢ generally formatted as shown in figure
4-32 (table 4-24 contains the exact encoding of
every instuction).

Bits 5 through 7 of the first byte of an instruction
comprise the R/B/P field. This field identifies a
register, bit select or pointer register operand as
outlined in 1able 4-20.

Table 4-20. R/B/P Field Encoding

Code | Register Bit Pointer
Qoo GA 0 GA,
001 GB 1 GB
010 GG 2 GC
011 BC 3 NiA
100 TP 4 TP
101 X 5 N/A,
110 ole] ] NiA
111 MC 7 N/A

The WB ficld (bits 3 and 4 of the first byte) in-
dicates how many displacement/data bytes are
present in the instruction as outlined in table 4-21.
The displacement bytes are used in program
transfers; one byte is present for short transfers,
while long 1ransfers contain a two-byte (word)
displacement. As mentioned in Chapter 3, the

BYTE1 BYTE 2

R/BE/PIWB | AA

F 4 3

e — -

N1 ESER FENA SETE NSRS YU SUR R R RN
QPLODE MM OFFSET

'I' BYTE4 BYTES
- - - ——

| LOW DISP/DATA |HIGH DISP/DATA |

e BASE REGISTER FOR MEMORY OPERAND
CPERATION (INSTRUCTION) CQDE

WIGTH (BYTE OR WORD QPERANDS)
MEMORY ADDRESSING MOCE
NUMBER OF DISPLACEMENT/DATA BYTES
REGISTER, BIT, POINTER SELECT

Figure 4-32. Typical 8089 Machine Instruction Format
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displacement is stored in two’s complement nota-
tion with the high-order bit indicating the sign.
Data bytes contain the value of an immediate con-
stant operand. A byte immediate instruction
(e.g., MOVBI) will have one data byte, and a
word immediate instruction (e.g., ADDD will
have two bytes (a word) of immediate data. An
instruction may contain either displacement or
data bytes, but net both (the TSL instruction is an
exception and contains on¢ byte of displacement
and one byte of data). If an offset byte is present,
the displacement/data byte(s) always follow the
offset byte.

Table 4-21. WB Ficld Encoding

Codo Intarpretaticn
00 No displacement/data bytes
™ One displacement/data byie
10 Two displacement/data bytes
11 TSL instruction only

The AA field specifies the addressing mode that
the processor is to use in order to construct the ef-
fective address of a memory operand. Four ad-
dressing modes are available as cutlined in 1able
4-22. (Address modes are described in detail in
section 3.8.)

Table 4-22. AA Field Encoding

Code Interpretation
00 Base register only
n Base register plus offset
10 Base register plus IX
1 Base register plus 1X,
auto-increment

Bit 0t of the first instruction byte indicates whether
the instruction operates on a byte (W=0) or a
wotd {(W=1).

Bits 7 through 2 of the second instruction byte
specify the instruction opcode. The opcode, in
conjunciion with the W field of the first byte,
identifies the instruction. ¥or example, the op-
code “I111011°" denctes the decrement instruc-
tion; if W=0, the assembly language instruction is
DECB, while if W=I, the instruc¢tion is DEC.
Table 4-26 lists, in hexadecimal order, the opcode
of every assembly language instruction.

The MM field (bits 0 and 1) indicates which
pointer (base) register is 1o be uscd to construct
the effective address of a memory operand. Table
4-23 defines the MM field encoding. (Memory
operand addressing is described in section 3.8.)

Table 4-23. MM Field Encoding

Code Base Register
00 GaA
01 GB
10 GG
1 PP

When the AA field value is <017 (base register
+ offset addressing), the third byte of the instrue-
tion contains the offset value, This unsigned value
is added to the content of the base register
specified by the MM field to form the effective
address of the memory operand.

When the AA field value is ““10,” the IX register
value is added to the content of the base register
specified by the MM field to provide a 64k range
of effective addresscs. (Note that the upper four
bits of the [X register are not sign-extended.)

When the AA field value is *11,” the 1X register
value is added to the base register value to form
the effective address as described for an AA field
value of ““10.”” In this addressing mode, howcever,
the IX register value is incremented by one after
every byte accessed.

Table 4-24. 8089 Instruction Encoding

DATA TRANSFER INSTRUCTIONS

MOV = Move word variable TEEA43210

TES4 3120

765845%210 76543210 Té&S543214 TES543270

Mamory Lo register

Repister ta ramaty

Mamory Lo memary

AARARDOA A 100000 MM clisel i AA-01
RARJOAAY |[1004G1WMM ollzet o A=
one0d A AT 102100 MM allget o ki COD00A A |1001|MM| olfset it AAnd |

4-33
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

DATATRANSFER (NSTRUCTIONS (Cant'a )

KOYB = Move byle varigple
Memny 1t reg s
Rag ster onemey

Hemory 1p memory

HOYBI = Mo Lyle immnedu s
Immediate v register

Irnrnediade 10 semory

MOVl = Move warg immediala
Immedabe o ragastar

hnTiediarg 10 memory

MOVP a Move pointer
MEMOry 14 pOITHET register

Ponntes rigisler 1o mamory

LG Load poantad with doubleword vanaple

LPON = Load pointer with doubleword immediale

ARITHMETIC INSTRUC TIONS

ADD = Addword varrabla
Memuiy 12 1egislar

Feaqgtar o memcey

ADGE = Agq Dyre varablg
Mamary (o regislar

Fogusner to mariry

ADDI m Add word Imimsdiate
tmmediate Lo regiglar

MM 1514 10 Mgl y

TES 43210

TES543219

TaS542 210

AARROO & A D

TH0020 M M

oltset il A=D1

AARGO A RD

100031 MM

attsetif AAaH

Tes5421310

TE543210

Tes43210

Gadoboaagp

1001 Dd MM

offger il AA—01

GODl.iUA.ﬂ.OJ'II[IUIIMM Cl St il & w1

RARAIDOOD [oo110D0 0 ala-d
DeDU Al [OTDOTTIMM offsel d AAa datla-g

RABRIGDDTI [DOT1DDOA dala-lp dala-hi

0301 DALY |O10014mm altsatal As -1 data-io dala-hi |
FRPOCOGRAAT (100811 MM olisal if AA—0

PPROOAAT 10010 0mMmMm Q5L IE A Am]

EPPUDA&1|1&DDIUMM 0lfselrf.~\A=0l—I

‘: FFR100G1 Iﬂ tTo01000 J olsetre ‘ offselni sergmanl-lg sEgmam-n —l
RARGOAAT (101000 MM oftsel il &k =01

ARAHDOA AT (110100 MM oMaslil An=g1

AARRODAAC |rotocomm ofisat il Aa=d1

RARGUVAAD [1101C0MmM oftsel i Aa=n

SHRAIDOUY G100 gD datg-la data-hl

QD010 AR (110000 MM odfzelal A4 =01 data-io Julah ‘I
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ARITHMETIC (NSTRUCTIONS [Cont'd )

ADDEI = Add byte Immediale
Immedal te ko raqlstar

Irnrned ia e o memcry

INC = 'norameont aord by 1
RAeglgter

Mamary

INGE = Ingremeni byt by 1

DEC m Decrement word by 1
Reqlsles

Meomgty

DECH = Dacrement byle by 1

Table 4-24. 8089 Instruction Encoding (Cont'd.)

LOGICAL AND BIT MANIFULATIOMN INSTRUCTIONS

AN = AND word vaneole
Memosy L reglsler

Requslar 6 mamory

ANDB = LMD Byte variable
dwrnary 1o registar

Fegi3Ier 1o mamary

ANDI = AND worg smmegiate:
Immedlate 1o register

tmradiad @ be mamory

ANDBY v AND byte immediate
Immeal g (G ragesigr

I medlate 1o mamary

OR = (R ward variable

THER4IEZID THEF4A3I2D0

FTEH4£3210 76547210 76543210 745432140
RRAGIODO|0OQ1TdOD0ON dalad

GA0D 1A LD | TI0006 M M| oFsarltAs-i data-8
ARACOCGRO|OOT T Y9 R

Qo0d0Aa a1 | 111010 N0M ofi el il Ad=11

OGBADAAD 111D 0IMM ollsel o AA=01
RRROOOYC|OO1TY Y1 B O

Ow0an 8 &1 T1101 1M olizal o Aa—01
pomgeaad]l11in- 1M olisalit aa=01

HERODBAAT [10:2010MM | offseidai-1

ARADDA AT [VID110NMM oftsetal &&=-01

RRRDI A MG 10101 0M K elizel il Aa=01

BARMIAAD (1131 10MM ofize || Aa=0t

RARIGEOT |21 010404 datadn data-bu
00 0a a1 10 1amM | odfserdas-tn dala-ly data-hi
AARRL190Q |G0101 00 data<g

BABAT A &S0 |1 6010 MM aliset it AA=m data-8

Memnry o regialer RAACOA AT [101 00178 M | oliseldai-tl
Regisier to memory ARRGOAAY [11010 1M M | offsets A=t
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

LOGICAL AND 81T MANIPULATION INSTRUCTIONS (Cont'd.}

QORE = OR byle vanable TESA4FI 210 706543230 76543210 766423210 TES543210 786543210
Memary 1o regisier RRAOOAAD [1 01001 MM oftaet If Aa=H
Rograter bo momery RARRODGAAD | 110101 MM otz il Aamdl

ORI = OR word immediate

immadiale fo registar AARRIQOOT |10 TH0 data-lo datg-Fi

Immediaig io megmory EO01aAAT [T10001T MM ciiselil As=0Y daka-lg dala-hi

ORB) = OR bylemmediale

IMMmediate (o rggister HHEAG1000 Judgronr1go data-f

\mmediare \o memot CODOD1T AAD | 110081 MM alfzeli A4=0 dalag

HOT = NOT wond vaviable

Reqistar ARERJOOOD OO T O1100
Memory GO0 A AT [T DM offselil Aa=0
Memory 1o regisier RREHOOAAT 101071 M™M cifastn AA=01

HOTB = NOT oyle varatle

Memory d0000 A AD 110111 MM aflsetl Ad=01
Memory ‘o reqister AREAGOA A} (10101 T MM oflset F AAnD1
SETE = $eibiiol |BBB¢U"1“U |1 11131 MM | L E BT |
CLR = Claar bt to 6 |BBBOG&AG'I1IIIOMMI etizatil Ad-M |

PROGAAM TRANSFER INSTRUCTIONS

*GALL = Can I 1000 A A r O T MM [ offzel il An =1 | digpH —l

LCALL = Long call | YOG oA A | 1001 1M ‘ llgel o sa=01 | aitp-lo | Hsphi
~IMP = Jump unrcond Heonal | 10001044 |0 c1poogan I disp-f J

LJMP = Long jump uneeadhongal [1 o0 DO |D Q1 d0nnaq | digp-lo | disp-hi

“The ASM-89 Assembiar will autematically gensraie the [ORg form 41 & Brogram ransher Inatrycion when \he

Larget i wnown 1o be beyond the byle-gisplacement rangs.
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HARDWARE REFERENCE INFORMATION

Tabie 4-24. 8089 Instruction Encoding (Cont’d.)

PAOGRAM TRAMSFER INSTRUCTIONS (Conitds

)2 = Jumpf werd s b

Lalet 1o reglster

Label lo memaory

LJZ = Long jump If word a €

Label to regiatar

Label to memary

“JZ6 w Jumnp [ bylens

LJZ8 = Long Jump o Byles d

“JNZ = Jump [l word Aot D

Label o regisiar

Latrs! 1o memory

LJHZ = Longjumnp il word not 0

Label bo reQisier

Label [o mamary

“JNZR = Jumgil Dyle nen 0

LINZE = Long ump|f byla not b

"JWMCE = Jump il masked campare equal

L4MCE = oy jump [Fmasksd compars sgual

*IMENE = Jump il maskad compare nol squal

LJMCHE = Long jump il masked compara not ageal

*JBY = pumpif bitis1

TES432446 F&a5d43218 TEGEA3210 PESAS21D TFES543210 TEEAIZID
AAROICOD D1 Q000D dp-&

gong1Aa Al 111001 MM cfgetif Ad=0 digp-d

RAAROQGDO (0000100 disp-h ansp-he

GO01T0AAY (11100 TMM oflsal H Ak =01 Glspela disp-hl
|DDUO‘I&A0]IIIDU1MM|oﬂaell‘AA-m sl
|DDOIO£#0||I|DD1MM[ ollsgla AA=01 disp-lo dap-nl
RAROMIDOO |1 O0GDH0AQ Y dizp-8

G001 ALY |ITTFEOMHK Gl |l As=m disp-a

RAARIDOOD [y O0CdoOO dlzp-lo dksp-hi

DODBTDA AT |1THEO0ONMM atisetil Ad=]1 dizp-o disp-hi _1
|0000|.ﬁﬂ0|l11000MM|Dllulrh\\n—ﬂl disg-8

|I}DO T0AAD |1 11480 M M’ oltzar if k=01 disp-lo dlsp-hi
|0I]UD1&N.D|ID!'-00MM[offseli”lﬂ-m disp3

IU P01 08 AD |IO 1100 MM ‘ offssl il Aa=01 disp-o dasp-te
LDOOOI&}0|t0||0|uu|olisatif.&.ﬂ-m disp-8

do0F1QAAD |1 D11 0TMM ‘ nlisal il Ad=01 digp-la digp-hi
FBBD1A&O[1011I]MM|Dl'lse1i1ﬁm=01 tisp-8

*The ASH-88 4 Blor wil ically o

Nargen os Knowmn o 0e DeyDnd the by le-diSplacemant range.

he long form of & program

tranafar imairucton when tha
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HARDWARE REFERENCE INFORMATION

Table 4-24, 8089 Instruction Encoding (Cont’d.)

FACGRAM TRANSFER JMSTAUC TIONS {Conl"d, )

TESA32I0 TE5423210 THS43210 TESAZ210 76543210 7&%azzro

LIBT = Long Lmp o bel:s 1 | BEBI0AAD | 101111 MM | offselif Ad-pt l dinp-o ] disp-hi
"IHBET = Jumpeid taf 15 nan I_B BEBEOTAAD | 181110 MM | ottaetil &A= J disg-8 ]

LINBT = Long jump H bt es mon 1 LB BBE1GAAD | TO1 110 MM | aflsat if Ad=ni l disp-lo | dizp-hl
PROCESSOR CONTRGL INSTRUCTIONS

THL = Tustand satwhile 19ckeg ‘ LUg1T1AAD | 100101 MM | allsetif AR =1 dana-E dep-8

Wil = Sen agical bus widths LISD‘OUOOU lﬂﬂononﬂﬂ—r

*S=g0urca Width, D= geslinglon wIdth 0=8 bils, 1=16 bils

XFEA = bnjer DM A maog |U1100000[00000000[
BINTR w 521 inlerrupl serice bit ’0 1TAad000d ‘0000 noo 0|
HLT m Hal thannel program |0n1004-&0[01001000l
NOF = Np gperanan LDDDDDDGU'UUOO(!ODUI

“The ASM-3% Assemblar wel auriomalically ganwrate INe leng lerm ol a program fransfer (natrycpon whan the

largel 15 kndwan 10 i tyond The byte-tisplacamant range

Table 4-26 lists all of the 8089 machine instruc- assembled machine instruction into its ASM-8¢
tions in hexadecimal/binary order by their second symbolic form. The preceding table (table 4-25)
byte. This table may be used to “*decode’ an defines the notation used in t1able 4-26.
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HARDWARE REFERENCE INFORMATION

Table 4-25. Key to 8089 Machine Instruction Decoding Guide

ldentifier Explanation
8 Logical width of source bus; 0=8, 1=16
D Logical width of destination bus, 0=8, 1=16
PRPP Pointer ragister encoded in R/B/P field
RRR Register encodad in R/B/P field
AA AA (addrassing mode) field
BEBB Bit select encoded In R/B/P field
offset-lo Low-order byte of offset word in doubleword pointer
ofiget-hi High-order byte of offset word in doubleword pointer
sagment-lo Low-order byte of segment word in doubleword painter
segment-hi High-order byte of segment word in doubleword pointer
data-§ 8-bitimmediate constant
datalo Low-order byte of 16-bit immediate constant
data-hi High-aorder byte of 16-bit immediate constant
disp-8 8-Lit signed displacement
disp-lo Low-order byte of 16-bit signed displacement
disp-hi High-order byte of 16-bit signed displacement
(ofiset) Cptional &bit offset used in offset addressing
Table 4-26. 8089 Machine Instruction Decoding Guide
Byte 2
Byte 1 - Bytes3,.4,5,6 ASM32 Instruction Format
Hex | Binary
00000000 00 1 00000000 NOP
01000000 00 | 0DOOOOD0 SINTR
15000000 00 | Q0000000 WID  source-width,dest-width
01100000 00 | 000QO000 XFER
01 | 00000001
} } ] notused
07 | 00000111
PPP10001 08 | 00001000 | offset-lo,offset-hi,gsegment-lo,segment-hi LPDI ptr-reg,immed32
09 | 00001001
t ] not used
1F | 000111114
RRRO1000 20 | 00100000 | data-8 ADDBI register,immed8
RRR10001 20 | 00100000 | data-lo,data-hi ADD! register,immedi6
10001000 20 | 00100000 | disp-8 JMP  short-iabel
10010001 20 | 00100000 | disp-lo,disp-hi LJMP  long-label
21 | 00100001
) } } not used
23 | 00100011
RRR0O1000 24 | Q0100100 | data-8 ORBl register.immeads§
RRAR10001 24 | 00100100 | data-io.data-hi ORI register,immed16
25 | 001001
¥ l notused
27 | 00100111
RRR01000 28 | 0019100C | data-8 ANDBI register immeds

4-39
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HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte1 Byte 2 Bytes 3,4,5,6 ASMBE9 Instruclion Format
Hex | Binary
RRR10001 28 | 00401000 | data-lo,data-hi ANDI  register,immed16
29 | 00101001
‘ not used
28 | 00101074
RARR00000 2C | 00101100 NOT register
2D [ 0010110t
} ] not used
2F | 00101111
RRAO1000 30 | 00110000 | cata-8 MOVBI register.immeds
RRR10001 30 | 00110000 | data-lo,data-hi MOVI  register,immedi6
3| 00110001
{ ] not used
37 | 0011014
RRRO000D 38 | 00111000 INC  register
3% ! 00111001
t ' not used
3B | 00111011
RRR0O0000 3C | G0111100 DEC register
30 | 06111101
‘ } notused
3F 10011111
RRR0O1000 40 |} 01000000 | disp-8 JNZ  register,short-label
RER10000 40 | 000000 | disp-lo,disp-hi LINZ register,long-label
11 01000001
) 1 } not used
43 | 000011
RRR0O1000 44 | 01000100 | disp-B JZ register short-labet
RRR10000 44 | (1000100 | disp-lo,disp-hi LJZ register,short-label
45 | 1000101
t ] not used
47 | 01000111
1100000 48 | 01001000 HLT
4% | 01001001
] not used
48 | 010101
M0 AAD 4G [010011MM
{ l {offset),data-8 MOVBI mem8, immeds
00001 AAD 4F (010 1MM
00G10A A1 4G [010011MM
t } } } (offset),data-lo,data-hi MOVI mem16,immedis
0000AAT 4F [ H0011MM
50 | 01010004}
{ not used
7F | 01111111
RRRO0AAD 80 | 100000MM
¥ } {offset) MOVB register mem§s
RRRODAAD 83 |100000MM

Mnemonics & Intal, 1879
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HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont*d.

Byte 2
Byte 1 Bytes3,4,5,8 ASMB9 Instruction Format

Hex | Binary
RRRO0AAT | 80 | 100000MM

¥ ] toftsaty } MOV register,mem18
RRR00AAT | 83 | 100000MM
RRRO0AAD | 84 | 100001MM

¥ ] (offset) } MOVB mem8,register
RRROGAAD | 57 | 100C01MM
RRADOAAT | 84 | 100001MM

¥ } (offset) \ MOY mem16,register
RARDOAAT | 87 | 100001%M
PPPODAAT | 88 | 100010MM

¥ ] } {offset) ] LPD ptr-reg,mem32
FPPODAAY | 8B | 100010MM
PPPOOAAT | 8C [ 100011MM

¥ } {offsen) } MOVP ptrreg,mem?2d
PPPOOAAT | 8F | 100091MM
00000AAD | 90 | 100100MM

¥ } (offset),00000AAD,110011MM, (offset) I MOVB mem8,mem8
00000AAG | 93 | 100100MM
00000AA1 50 | 100100MM

¥ 1 } {ofiset),00000AA1,110011MM, (ofIset) ] MOY memi18,mem1s
Q0000AAT | 93 | 100100MM
00011AAD | 94 | 100101MM

¥ } (offset),data-8,disp-8 ] TSL mem8,immeds,short-label
0D011AAD | 97 | 100101MM
PPPCOAAT | 98 | 100110MM

t } (oftset) } MOVP  mem24 pir-reg
PPPOOAAT | 9B | 100110MM
100014A1 | 9C [ 100111MM

} ¥ } (offset),disp-8 I GCALL mem24, short-label
10003AA1 | 9F | 10011iMM
10010AA1 | 9C | 10011IMM

¥ ] {oftset),disp-lo,disp-hi , LCALL mem24,long-labe!
10010AA1 | 9F [ 100111MM
RRROGAAD | AD | 101000MM

} ¥ } (offset) ] ADDB register,memd
RRRO0DAAD | A3 | 101000MM
RRRO0AAT | AD | 1061000MM

¥ { } {offset) ADD register,memi6
RARODAAT | A3 | 101000MM
RRAOCAAD [ A4 | 101001MM

¥ + } (offset) QRB register,mem8

RRROOAAL | A7 | $01001MM
RRR00AAT | A4 | 101001MM

¥ ‘ {offsel) OR register,mem18
RRRO0AAT | A7 | 101001MM
RRRCOAAD | A8 | 101010MM

4 ] (offset) ANDB mem8,register
RRR00AAD | AB | 101010MM

4-61
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HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d,

Byte 2
Byte 1 - Bytes 3,4,5. 6 ASMBS Instruction Format
Hex | Binary
RRROCAAT | A8 | 101610MM
} ] (oltset) ] AND  mem16,register
RRRODAAY | AB | 101010MM
RRRODAAO | AC | 101011MM
t ] (offset) ] NOTB register,mems
RRRODAAG | AF | 101011MM
RRRO0AAT | AC | 101011MM
t } (offset) ] NOT register,mem16
RRROGAAT | AF | 101011MM
0000TAAD | BO | 101100MM
} } (ofiset), disp-8 ] JMCE mem3,short-labet
00001AA0 | B3 | 101100MM
C0010AAD | BO | 101100MM
} } (offsen),disp-lo,disp-hi ] LJMCE mem8,long-label
00010AA0 | B3 | 101100MM
00001AAD | B4 | 101101MM
' {offsel),disp-8 } JMCNE  mem8,short-label
00001AAD | B7 | 101101MM
00010AA0 | B4 | 10110t1MM
¥ {offset),disp-lo.disp-hi LIMCNE  mem8, long-label
00010AAD | B7 | 101301MM
BBB01AAC | B& | 101116MM
1 (offset.disp-8 JNBT  mem8,bit-selectshort-label
BBBOTAAD | BB | 101110MM
BBBI10AAD [ BB { 101110MM
(oftset),disp-lo, disp-hi LINBT  mem8,bit-select, long-label
BBB10AAD [ BB | 101110MM
BBBO1AAD | BC | 101111MM
¥ ] (offset),disp-8 JBT  memd,bil-select, short-abel
8BB01AAS | BF | 161111MM
BBB10AAD | BG | 101111MM
} ] {offset), disp-lo,disp-hi } LJBT mem8bit-select,long-label
BBB10AAD | BF | 104111MM
00001AA0 | GO | 110000MM
¥ } (offset),data-8 l ADDBI mem8,immeds
00001440 | €3 | 110000MM
00010AAT | CO | 110000MM
} ] {offset) data-to, data-hi ] ADDI mem16,immedi6
00D10AAT | C3 | 110000MM
00001AAD | C4 [ 110001MM
} } (offset),data-8 ORBI mems,immeds
0000TAAD | C7 | 110001MM
00010AAT | C4 | 110001 MM
¥ } (offset),data-lo.data-hi ORI mem16,immed16
00010AAT | C7 [ 110001 MM
0OD01AAG | €8 [ 110010MM
{ ] (offset),data-8 ANDBI mem8,immeds
00001AA0 | CB | 110010MM

Mnemonigs - Inlal, 1970

4-62



HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 1 Byte 2 Byles3, 4,5,6 ASMB9 Instruction Format
Hex] Binary
000104 A1 C8 1 110010MM
I {offset),data-lo,data-hi ] ANDI mem16,immedif
00010AA1 CB | 1Me10MM
GC | 11001100
¥ ] not used
CF | 11001111
RRROOAAD DO | 110100MM
¥ } {ottset) ’ ADDEB mem$§ register
RERODAAD D3 | 110100#M
RRRODAAT Do | 110100MM
} l {oftset) } ADD memi6, register
ARRODAAT D3 | 110100MM
RRRODAAD | D4 | 11N0IMM
{ ] {offset) ORB mem8,register
RRRODAAG | OF | 110101MM
RRRMOAAL Da | 110101MM
+ } {offset) CR memi!6,register
RRROOAAT D7 | 11010IMM
RRRO0AAD D8 | HHO11OMM
} } {ottsen ANDB mem8,register
RRROJAAD 08 | 110110MM
REBROOAAIL D& | 110110MM
} } ] {offset} AND memi6,register
RRR00AA1 OB | 1M0110MM
RRRO0AAD | DC| NMOITIMM
} ] {offset) NOTE mem8,register
RRR00AAD DF | 110111MM
RARDGAAT DG | 110111IMM
¥ {oféset) NOT memi6 register
RRR00AAT OF | N0111MM
Qo001 AAQ EO | 111000MM
{ {offset), disp-8 JNZB mem8,short-label
00001 AAD E3 | 1110H0MM
00001 AAT EQ | 111000MM
t {offset) disp-8 JNZ  mem16,shortlabet
00001 A A1 E3 | 111000MM
0O010AAD EO0 | 11100MM
{offsat) disp-lo.disp-hi LINZB mem8.long-label
HO10AAD E3 | 111000MM
00010AA1 EQ | 111000MM
i (offset), disp-lo,disp-hi LJNZ memi6.longlabel
QO010AAT E3 | 111000MM
00001 AAD E4 | 111001MM
t { ] {offset),disp-8 JZB  mem8,short-label
00001 AAQ E7 | 11100 MM
00001 AA1 E4 | 111001MM
¥ ¥ ¥ } {offset), disp-8 JZ mem16,shortlabel
00001 A AT E7 | 111001MM

4-63

Mnemomcs el 1973




HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont'd.

Byte 2
Byte 1 y - Byles 3,4,5,6 ASME9 Instruction Fermat
Hex | Binary
00010AAL E4 | 111001MM
1 {ottset), disp-lo,disp-hi LJZB mems,long-label
000104 AD E7 | 111001MM
00010AAT E4 | 111001MM
¥ {offset},disp-lo,disp-hi LJZ memif,long-label
000104 A1 E7 | 111001 MM
00CC0AAD E8 [ 111010MM
} } ¥ {oHfset) INCB mem8
00000 A AD EB | 111HOMM
00000AAT ES | 111010MM
1 (offset) ING memi§
000004 A1 EB | 111010MM
00000A A0 EC | 1M1011MM
¥ ¥ {offset) DECB mem8
00000AAD EF 1 t11011MM
G000 AA1 EG | 111011MM
¥ ¥ (otfset) DEC mem16
00000 A A1 EF | 111011MM
Fe | 11110000
\ notused
F3 | 11110000
BBBO0AAD Fd4 | 111101MM
{ t l{offset} SETB mem8,0-7
BRBBODAAD F7 { t11101MM
BBBOOAAD F8 | 111110MM
i } } (offset) CLR mems,0-7
BBBOOAAD FB | 111110MM
FC | 11111100
t notused
FF | 11111114

B
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